Skip to main content
Log in

Generation of CD44 gene-deficient mouse derived induced pluripotent stem cells

CD44 gene-deficient iPSCs

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Induced pluripotent stem cells (iPSCs) show good promise for the treatment of defects caused by numerous genetic diseases. Herein, we successfully generated CD44 gene-deficient iPSCs using Oct4, Sox2, Klf4, and vitamin C. The generated iPSCs displayed a characteristic morphology similar to the well-characterized embryonic stem cells. Alkaline phosphatase, cell surface (SSEA1, NANOG, and OCT4), and pluripotency markers were expressed at high levels in these cells. The iPSCs formed teratomas in vivo and supported full-term development of constructed porcine embryos by inter-species nuclear transplantation. Importantly, incubation with trichostatin A increased the efficiency of iPSCs generation by increasing the histone acetylation levels. Moreover, more iPSCs colonies appeared following cell passaging during colony picking, thus increasing the effectiveness of iPSCs selection. Thus, our work provides essential stem cell materials for the treatment of genetic diseases and proposes a novel strategy to enhance the efficiency of induced reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6:e25255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  PubMed  CAS  Google Scholar 

  • Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471

    Article  PubMed  CAS  Google Scholar 

  • Bessede E, Staedel C, Acuna Amador LA, Nguyen PH, Chambonnier L, Hatakeyama M, Belleanneeg G, Megraud F, Varon C (2013) Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene

  • Chen J, Liu J, Han Q, Qin D, Xu J, Chen Y, Yang J, Song H, Yang D, Peng M, He W, Li R, Wang H, Gan Y, Ding K, Zeng L, Lai L, Esteban MA, Pei D (2010) Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J Biol Chem 285:31066–31072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011) Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20:2103–2115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng CX, Ye ZH, Jang YY (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cong P, Zhu K, Ji Q, Zhao H, Chen Y (2013) Effects of trichostatin A on histone acetylation and methylation characteristics in early porcine embryos after somatic cell nuclear transfer. Anim Sci J 84:639–649

    Article  PubMed  CAS  Google Scholar 

  • Conner DA (2001) Mouse embryo fibroblast (MEF) feeder cell preparation. Curr Protoc Mol Biol Chapter 23: Unit 23 2

  • Durcova-Hills G, Tang FC, Doody G, Tooze R, Surani MA (2008) Reprogramming primordial germ cells into pluripotent stem cells. PLoS One 3

  • Esteban MA, Bao XC, Zhuang Q, Zhou T, Qin BM, Pei DQ (2012) The mesenchymal-to-epithelial transition in somatic cell reprogramming. Curr Opin Genet Dev 22:423–428

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo W, Frenette PS (2013) Alternative CD44 splicing in intestinal stem cells and tumorigenesis. Oncogene

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Zhu K, Liu Z, Song Z, Huang Y, Zhao H, Chen Y, He Z, Mo D, Cong P (2013) Improvement of porcine cloning efficiency by trichostatin A through early-stage induction of embryo apoptosis. Theriogenology 79:815–823

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Kim SW, Lee HG, Im GS, Yang BC, Kim NH, Kim DH (2011) Trichostatin A promotes the development of bovine somatic cell nuclear transfer embryos. J Reprod Dev 57:34–42

    Article  PubMed  CAS  Google Scholar 

  • Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Lu F, Wang X, Wang Z, Li X, Gong F, Jiang J, Liu Q, Shi D (2013) Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 80:878–886

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3:341–350

    Article  PubMed  Google Scholar 

  • Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668

    Article  PubMed  CAS  Google Scholar 

  • Molina-Estevez FJ, Lozano ML, Navarro S, Torres Y, Grabundzija I, Ivics Z, Samper E, Bueren JA, Guenechea G (2013) Brief report: impaired cell reprogramming in nonhomologous end joining deficient cells. Stem Cells 31:1726–1730

    Article  PubMed  CAS  Google Scholar 

  • Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  PubMed Central  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7:64–77

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, Nakamura T, Schlaeger TM, Shimamura A, Daley GQ (2013) Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell 12:727–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM (2007) Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134:781–787

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Wei X, Wang M, Zhang R, Fu Y, Xing M, Hua Q, Xie X (2013) Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem 288(14):9767–9778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the 973 Program (no. 2010CB945404), the National Transgenic Major Program of China (no. 2011ZX08006-005), and “the Fundamental Research Funds for the Central Universities” (no. 11lgpy46).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiqing Cong.

Additional information

Editor: T. Okamoto

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers used in this study (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Ji, Q., Zhao, H. et al. Generation of CD44 gene-deficient mouse derived induced pluripotent stem cells. In Vitro Cell.Dev.Biol.-Animal 50, 874–882 (2014). https://doi.org/10.1007/s11626-014-9786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9786-6

Keywords

Navigation