Skip to main content
Log in

Expression of microRNA-1, microRNA-133a and Hand2 protein in cultured embryonic rat cardiomyocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In this study, we investigated the expression of the pathway, SRF–microRNA-1/microRNA-133a–Hand2, in the Wistar rat embryonic ventricular cardiomyocytes under conventional monolayer culture. The morphological observation of the cultured cardiomyocytes and the mRNA expression levels of three vital constituent proteins, MLC-2v, N-cadherin, and connexin43, demonstrated the immaturity of these cultured cells, which was featured by less myofibril density, immature sarcomeric structure, and significantly lower mRNA expression of the three constituent proteins than those in neonatal ventricular samples. More importantly, results in this study suggest that the change of SRF–microRNA-1/microRNA-133a–Hand2 pathway results into the attenuation of the Hand2 repression in cultured cardiomyocytes. These outcomes are valuable to understand the cellular state as embryonic cardiomyocytes to be in vitro model and might be useful for the assessment of engineered cardiac tissue and cardiac differentiation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24

    Article  PubMed  CAS  Google Scholar 

  • Bruneau BG (2005) Tiny brakes for a growing heart. Nature 436(14):181–182

    Article  PubMed  CAS  Google Scholar 

  • Callis TE, Wang D (2008) Taking microRNAs to heart. Trends Mol Med 14(6):254–260

    Article  PubMed  CAS  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW II, Ellingsen Ø, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Das M, Molnar P, Gregory C, Riedel L, Jamshidi A, Hickman JJ (2004) Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 25:5643–5647

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Etzion S, Battler A, Barbash IM, Cagnano E, Zarin P, Granot Y, Kedes LH, Kloner RA, Leor J (2001) Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 33:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Matsumoto T, Nomura Y, Nakamura T (2005) An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium's electrical and mechanical response in vivo. IEEE Eng Med Biol Mag 24(4):73–79

    Article  PubMed  Google Scholar 

  • Feng Z, Ishibashi M, Nomura Y, Kitajima T, Nakamura T (2006) Constraint stress, microstructural characteristics, and enhanced mechanical properties of a special fibroblast-embedded collagen construct. Artif Organs 30(11):870–877

    Article  PubMed  Google Scholar 

  • Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M (2001) Interrelating different types of genomic data, from proteome to secretome: oming in on function. Genome Res 11:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hasegawa N, Kinoshita H, Mochizuki M (2007) Pycnogenol increases the probability of the contraction state in chick embryonic cardiomyocytes, indicating inotropic effects. Phytother Res 21:181–182

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K, Ma Q, Kang PM, Golub TR, Pu WT (2009) MicroRNA-1 negatively regulate expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McFadden D, Barbosa A, Richardson J, Schneider M, Srivastava D, Olson E (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132(1):189–201

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Feng Z, Honda T, Nomura Y, Kitajima T, Umezu M (2008) Comparison of mRNA expression of transcriptional factors and intercalated disc constituent proteins between in vivo and cultured cardiomyocytes. J Artif Organs 11(3):134–140

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Hong C, Chen I, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Rane S, Abdellatif M (2009) MicroRNAs Challenge the status quo of therapeutic targeting. J Cardiovasc Trans Res 2:100–107

    Article  Google Scholar 

  • Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32(4):e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Lee E, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40

    Article  PubMed  CAS  Google Scholar 

  • Sluijter JPG, Mil A, Vliet P, Metz CHG, Liu J, Doevendans PA, Goumans M (2010) MicroRNA-1 and −499 regulate differentiation and proliferation in human-derived cardiomyocytes progenitor cells. Arterioscler Thromb Vasc Biol 30:859–868

    Article  PubMed  CAS  Google Scholar 

  • Thum T, Catalucci D, Bauersachs J (2008) MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res 79:652–670

    Article  Google Scholar 

  • Vo NK, Dalton RP, Liu N, Olson EN, Goodman RH (2010) Affinity purification of microRNA-133a with the cardiac transcription factor, Hand2. PNAS 107(45):19231–19236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamagishi H, Yamagishi C, Nakagawa O, Harvey R, Olson E, Srivastava D (2001) The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol 239:190–203

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32(4):189–197

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(14):214–220

  • Zhao Y, Ransom JF, Li A, Vedantham V, Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

  • Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported in part by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) (25350521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonggang Feng.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Takahashi, R., Nakamura, T. et al. Expression of microRNA-1, microRNA-133a and Hand2 protein in cultured embryonic rat cardiomyocytes. In Vitro Cell.Dev.Biol.-Animal 50, 700–706 (2014). https://doi.org/10.1007/s11626-014-9755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9755-0

Keywords

Navigation