Skip to main content
Log in

A comparative study of PKH67, DiI, and BrdU labeling techniques for tracing rat mesenchymal stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have generated a great deal of promise as a potential source of cells for cell-based therapies. Various labeling techniques have been developed to trace MSC survival, migration, and behavior in vitro or in vivo. In the present study, we labeled MSCs derived from rat bone marrow (rMSCs) with florescent membrane dyes PKH67 and DiI, and with nuclear labeling using 5 μM BrdU and 10 μM BrdU. The cells were then cultured for 6 d or passaged (1–3 passages). The viability of rMSCs, efficacy of fluorescent expression, and transfer of the dyes were assessed. Intense fluorescence in rMSCs was found immediately after membrane labeling (99.3 ± 1.6% PKH67+ and 98.4 ± 1.7% DiI+) or after 2 d when tracing of nuclei was applied (91.2 ± 4.6% 10 μM BrdU+ and 77.6 ± 4.6% 5 μM BrdU+), which remained high for 6 d. Viability of labeled cells was 91 ± 3.8% PKH67+, 90 ± 1.5% DiI+, 91 ± 0.8% 5 μM BrdU+, and 76.9 ± 0.9% 10 μM BrdU+. The number of labeled rMSCs gradually decreased during the passages, with almost no BrdU+ nuclei left at final passage 3. Direct cocultures of labeled rMSCs (PKH67+ or DiI+) with unlabeled rMSCs revealed almost no dye transfer from donor to unlabeled recipient cells. Our results confirm that labeling of rMSCs with PKH67 or DiI represents a non-toxic, highly stable, and efficient method suitable for steady tracing of cells, while BrdU tracing is more appropriate for temporary labeling due to decreasing signal over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Allsopp CE, Nicholls SJ, Langhorne J (1998) A flow cytometric method to assess antigen-specific proliferative responses of different subpopulations of fresh and cryopreserved human peripheral blood mononuclear cells. J Immunol Methods 214:175–186

    Article  CAS  PubMed  Google Scholar 

  • Askenasy N, Farkas DL (2002) Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 20:501–513

    Article  PubMed  Google Scholar 

  • Askenasy N, Stein J, Farkas DL (2007) Imaging approaches to hematopoietic stem and progenitor cell function and engraftment. Immunol Invest 36:713–738

    Article  PubMed  Google Scholar 

  • Blumenthal R, Sarkar DP, Durell S, Howard DE, Morris SJ (1996) Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J Cell Biol 135:63–71

    Article  CAS  PubMed  Google Scholar 

  • Boutonnat J, Barbier M, Ronot X, Seigneurin D (2000) Nucleus labeling or membrane labeling for studying the proliferation of drug treated cells? Morphologie 84:11–15

    CAS  PubMed  Google Scholar 

  • Boutonnat J, Barbier M, Rousselle C, Muirhead KA, Mousseau M, Seigneurin D, Ronot X (1998) Usefulness of PKHs for studying cell proliferation. C R Acad Sci III 321:901–907

    Article  CAS  PubMed  Google Scholar 

  • Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28:1951–1961

    Article  PubMed  Google Scholar 

  • Cizkova D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180

    Article  PubMed  Google Scholar 

  • Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20:161–171

    Article  CAS  PubMed  Google Scholar 

  • Feng SW, Yao XL, Li Z, Liu TY, Huang W, Zhang C (2005) In vitro bromodeoxyuridine labeling of rat bone marrow-derived mesenchymal stem cells. Di Yi Jun Yi Da Xue Xue Bao 25:184–186

    PubMed  Google Scholar 

  • Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A 92:11879–11883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gant VA, Shakoor Z, Hamblin AS (1992) A new method for measuring clustering in suspension between accessory cells and T lymphocytes. J Immunol Methods 156:179–189

    Article  CAS  PubMed  Google Scholar 

  • Horan PK, Slezak SE (1989) Stable cell membrane labelling. Nature 340:167–168

    Article  CAS  PubMed  Google Scholar 

  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  CAS  PubMed  Google Scholar 

  • Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C (2000) Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 60:4446–4452

    CAS  PubMed  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreft B, Berndorff D, Bottinger A, Finnemann S, Wedlich D, Hortsch M, Tauber R, Gessner R (1997) LI-cadherin-mediated cell-cell adhesion does not require cytoplasmic interactions. J Cell Biol 136:1109–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuriyama S, Yamazaki M, Mitoro A, Tsujimoto T, Kikukawa M, Okuda H, Tsujinoue H, Nakatani T, Yoshiji H, Toyokawa Y, Nagao S, Fukui H (1998) Analysis of intrahepatic invasion of hepatocellular carcinoma using fluorescent dye-labeled cells in mice. Anticancer Res 18:4181–4188

    CAS  PubMed  Google Scholar 

  • Ladd AC, Pyatt R, Gothot A, Rice S, McMahel J, Traycoff CM, Srour EF (1997) Orderly process of sequential cytokine stimulation is required for activation and maximal proliferation of primitive human bone marrow CD34+ hematopoietic progenitor cells residing in G0. Blood 90:658–668

    CAS  PubMed  Google Scholar 

  • Lassailly F, Griessinger E, Bonnet D (2010) “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood 115:5347–5354

    Article  CAS  PubMed  Google Scholar 

  • Leiker M, Suzuki G, Iyer VS, Canty JM Jr, Lee T (2008) Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 17:911–922

    Article  PubMed Central  PubMed  Google Scholar 

  • Li N, Yang H, Lu L, Duan C, Zhao C, Zhao H (2008) Comparison of the labeling efficiency of BrdU, DiI and FISH labeling techniques in bone marrow stromal cells. Brain Res 1215:11–19

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zhang R, Sun H, Chen L, Liu F, Yao C, Du M, Jiang X (2013) PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev 22:340–344

    Article  PubMed Central  PubMed  Google Scholar 

  • Malhotra JD, Tsiotra P, Karagogeos D, Hortsch M (1998) Cis-activation of L1-mediated ankyrin recruitment by TAG-1 homophilic cell adhesion. J Biol Chem 273:33354–33359

    Article  CAS  PubMed  Google Scholar 

  • Maus U, Herold S, Muth H, Maus R, Ermert L, Ermert M, Weissmann N, Rosseau S, Seeger W, Grimminger F, Lohmeyer J (2001) Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am J Physiol Lung Cell Mol Physiol 280:L58–L68

    CAS  PubMed  Google Scholar 

  • Menasche P (2008) Current status and future prospects for cell transplantation to prevent congestive heart failure. Semin Thorac Cardiovasc Surg 20:131–137

    Article  PubMed  Google Scholar 

  • Nasef A, Fouillard L, El-Taguri A, Lopez M (2007) Human bone marrow-derived mesenchymal stem cells. Libyan J Med 2:190–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowakowski RS, Hayes NL (2001) Stem cells: the promises and pitfalls. Neuropsychopharmacology 25:799–804

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pricop L, Salmon JE, Edberg JC, Beavis AJ (1997) Flow cytometric quantitation of attachment and phagocytosis in phenotypically-defined subpopulations of cells using PKH26-labeled Fc gamma R-specific probes. J Immunol Methods 205:55–65

    Article  CAS  PubMed  Google Scholar 

  • Quade MJ, Roth JA (1999) Dual-color flow cytometric analysis of phenotype, activation marker expression, and proliferation of mitogen-stimulated bovine lymphocyte subsets. Vet Immunol Immunopathol 67:33–45

    Article  CAS  PubMed  Google Scholar 

  • Rousselle C, Barbier M, Comte VV, Alcouffe C, Clement-Lacroix J, Chancel G, Ronot X (2001) Innocuousness and intracellular distribution of PKH67: a fluorescent probe for cell proliferation assessment. In Vitro Cell Dev Biol Anim 37:646–655

    Article  CAS  PubMed  Google Scholar 

  • Spotl L, Sarti A, Dierich MP, Most J (1995) Cell membrane labeling with fluorescent dyes for the demonstration of cytokine-induced fusion between monocytes and tumor cells. Cytometry 21:160–169

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161:367–383

    Article  CAS  PubMed  Google Scholar 

  • Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  CAS  PubMed  Google Scholar 

  • Traycoff CM, Orazi A, Ladd AC, Rice S, McMahel J, Srour EF (1998) Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp Hematol 26:53–62

    CAS  PubMed  Google Scholar 

  • Wallace PK, Tario JD Jr, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA (2008) Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73:1019–1034

    Article  PubMed  Google Scholar 

  • Yamamura Y, Rodriguez N, Schwartz A, Eylar E, Bagwell B, Yano N (1995) A new flow cytometric method for quantitative assessment of lymphocyte mitogenic potentials. Cell Mol Biol (Noisy-le-grand) 41(Suppl 1):S121–S132

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant project VEGA 2/0169/13, APVV-0472-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Nagyova.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagyova, M., Slovinska, L., Blasko, J. et al. A comparative study of PKH67, DiI, and BrdU labeling techniques for tracing rat mesenchymal stem cells. In Vitro Cell.Dev.Biol.-Animal 50, 656–663 (2014). https://doi.org/10.1007/s11626-014-9750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9750-5

Keywords

Navigation