Skip to main content
Log in

Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Athanasiou A.; Clarke A.; Turner A.; Kumaran N.; Vakilpour S.; Smith P.; Bagiokou D.; Bradshaw T.; Westwell A.; Fang L.; Lobo D.; Constantinescu C.; Calabrese V.; Loesch A.; Alexander S.; Clothier R.; Kendall D.; Bates T. Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem. Biophys. Res. Commun. 364: 131–137; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Aviello G.; Romano B.; Borrelli F.; Capasso R.; Gallo L.; Piscitelli F.; Di Marzo V.; Izzo A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. 90: 925–934; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Bauer E.; Williams B. A.; Smidt H.; Verstegen M. W.; Mosenthin R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issue Intest. Microbiol. 7: 35–51; 2006.

    CAS  Google Scholar 

  • Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B 86: 439–472; 1987.

    Article  CAS  PubMed  Google Scholar 

  • Chantret I.; Barbat A.; Dussaulx E.; Brattain M. G.; Zweibaum A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48: 1936–1942; 1988.

    CAS  PubMed  Google Scholar 

  • Chiu P.; Karler R.; Craven C.; Olsen D. M.; Turkanis S. A. The influence of delta9-tetrahydrocannabinol, cannabinol and cannabidiol on tissue oxygen consumption. Res. Commun. Chem. Pathol. Pharmacol. 12: 267–286; 1975.

    CAS  PubMed  Google Scholar 

  • Csete M.; Ourednik J.; Ourednik V.; Sakaguchi D.; NilsenHamilton M. Oxygen in the cultivation of stem cells. Stem Cell Biol. Develop Plast. 1049: 1–8; 2005.

    CAS  Google Scholar 

  • Donohoe D. R.; Garge N.; Zhang X.; Sun W.; O’Connell T. M.; Bunger M. K.; Bultman S. J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13: 517–526; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta R. C.; Dutta A. K. Cell-interactive 3D-scaffold; advances and applications. Biotechnol. Adv. 27: 334–339; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Espey M. G. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 55: 130–140; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hara A.; Hibi T.; Yoshioka M.; Toda K.; Watanabe N.; Hayashi A.; Iwao Y.; Saito H.; Watanabe T.; Tsuchiya M. Changes of proliferative activity and phenotypes in spontaneous differentiation of a colon cancer cell line. Jpn. J. Cancer Res. 84: 625–632; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Ivanovic Z. Hypoxia or in situ normoxia: the stem cell paradigm. J. Cell. Physiol. 219: 271–275; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ligresti A.; Moriello A. S.; Starowicz K.; Matias I.; Pisanti S.; De Petrocellis L.; Laezza C.; Portella G.; Bifulco M.; Di Marzo V. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther. 318: 1375–1387; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Massi P.; Vaccani A.; Ceruti S.; Colombo A.; Abbracchio M. P.; Parolaro D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J. Pharmacol. Exp. Ther. 308: 838–845; 2004.

    Article  CAS  PubMed  Google Scholar 

  • McAllister S. D.; Murase R.; Christian R. T.; Lau D.; Zielinski A. J.; Allison J.; Almanza C.; Pakdel A.; Lee J.; Limbad C.; Liu Y.; Debs R. J.; Moore D. H.; Desprez P. Y. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res. Treat. 129: 37–47; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKallip R. J.; Jia W.; Schlomer J.; Warren J. W.; Nagarkatti P. S.; Nagarkatti M. Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol. Pharmacol. 70: 897–908; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Morrison S. J.; Csete M.; Groves A. K.; Melega W.; Wold B.; Anderson D. J. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20: 7370–7376; 2000.

    CAS  PubMed  Google Scholar 

  • Pinto M.; Robineleson S.; Appay M.; Kedinger M.; Triadou N.; Dussaulx E.; Lacroix B.; Simonassmann P.; Haffen K.; Fogh J.; Zweibaum A. Enterocyte-like differentiation and polarization of the human-colon carcinoma cell-line Caco-2 in culture. Biol. Cell. 47: 323–330; 1983.

    Google Scholar 

  • Prasad S.; Czepiel M.; Cetinkaya C.; Smigielska K.; Weli S. C.; Lysdahl H.; Gabrielsen A.; Petersen K.; Ehlers N.; Fink T. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif. 42: 63–74; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Rocha F. G.; Whang E. E. Intestinal tissue engineering: from regenerative medicine to model systems. J. Surg. Res. 120: 320–325; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Roeselers G.; Ponomarenko M.; Lukovac S.; Wortelboer H. M. Ex vivo systems to study host-microbiota interactions in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 27: 101–113; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Ruhaak L. R.; Felth J.; Karlsson P. C.; Rafter J. J.; Verpoorte R.; Bohlin L. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biol. Pharm. Bull. 34: 774–778; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 35: S35–S38; 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin E.; Forsyth N. R.; Fricker R. A. The effect of physiological oxygen levels on GABAergic neuronal differentiation from mouse embryonic stem cells. Stem Cell Stud. 2: e3; 2012.

    Article  Google Scholar 

  • Shipp C.; Derhovanessian E.; Pawelec G. Effect of culture at low oxygen tension on the expression of heat shock proteins in a panel of melanoma cell lines. PLoS ONE 7: e37475; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shrivastava A.; Kuzontkoski P. M.; Groopman J. E.; Prasad A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 10: 1161–1172; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Solinas M.; Massi P.; Cinquina V.; Valenti M.; Bolognini D.; Gariboldi M.; Monti E.; Rubino T.; Parolaro D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS ONE 8: e76918; 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van De Walle J.; Hendrickx A.; Romier B.; Larondelle Y.; Schneider Y. Inflammatory parameters in Caco-2 cells: effect of stimuli nature, concentration, combination and cell differentiation. Toxicol. in Vitro 24: 1441–1449; 2010.

    Article  Google Scholar 

  • Webster M.; Witkin K. L.; Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122: 1477–1486; 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young E. W.; Beebe D. J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39: 1036–1048; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu D.; Waby J. S.; Chirakkal H.; Staton C. A.; Corfe B. M. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol. Cancer 9: 276; 2010.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

T. Macpherson is partly funded by a Novartis Pharmaceuticals UK Ltd (Horsham, UK) studentship with matched funding from the Biotechnology and Biological Sciences Research Council (BBSRC, Swindon, UK). K. Wright is partly funded by a Peel Trust Lectureship from The Dowager Countess Eleanor Peel Trust. We would also like to thank Dr Dave Clancy for useful discussions on data interpretation and statistics and Dr Jane Andre for assistance with the confocal imaging (both from Faculty of Health and Medicine, Lancaster University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Wright.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macpherson, T., Armstrong, J.A., Criddle, D.N. et al. Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol. In Vitro Cell.Dev.Biol.-Animal 50, 417–426 (2014). https://doi.org/10.1007/s11626-013-9719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9719-9

Keywords

Navigation