Skip to main content
Log in

Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The expression of the gene encoding myostatin (MSTN), the product of which is a negative regulator of skeletal muscle growth and development in mammals, is regulated by many cis-regulatory elements, including enhancer box (E-box) motifs. While E-box motif mutants of MSTN exhibit altered expression of myostatin in many animal models, the phenotypes of these mutations in chicken are not investigated. In this study, we cloned and sequenced the full encoded DNA sequence of MSTN gene and its upstream promoter region in Wenshang Luhua chicken breed. After analysis of the sequence, 13 E-box motifs were identified in the MSTN promoter region, which were denoted by E1 to E13 according to their positions in the region. Although many single nucleotide polymorphisms (SNPs) were revealed in the MSTN promoter region, only two SNPs were in the E-boxes, i.e., the first nucleotide of the E3 and the fifth nucleotide of E4. The effects of these two polymorphisms on the expression of MSTN gene were explored both with MSTN-GFP reporter constructs in vitro and real-time PCR in vivo. The results suggested that the E-boxes in the chicken MSTN promoter region are involved in the regulation of myostatin expression and the polymorphisms in E3 and E4 altered the expression of myostatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Arai K. Y.; Nishiyama T. Developmental changes in extracellular matrix messenger RNAs in the mouse placenta during the second half of pregnancy: possible factors involved in the regulation of placental extracellular matrix expression. Biol. Reprod. 77: 923–933; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Argiles J. M.; Orpi M.; Busquets S.; Lopez-Soriano F. J. Myostatin: more than just a regulator of muscle mass. Drug Discov. Today 17: 702–709; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Baron E. E.; Wenceslau A. A.; Alvares L. E.; Nones K.; Ruy D. C.; Schmidt G. S.; Zanella E. L.; Coutinho L. L.; Ledur M. C. High levels of polymorphism in the mysostatin chicken gene. Paper read at Proceedings of the 7th World Congr, 19–23 August at Genet.; 2002.

  • Cartharius K.; Frech K.; Grote K.; Klocke B.; Haltmeier M.; Klingenhoff A.; Frisch M.; Bayerlein M.; Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21: 2933–2942; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Chenna R.; Sugawara H.; Koike T.; Lopez R.; Gibson T. J.; Higgins D. G.; Thompson J. D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497–3500; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Clop A.; Marcq F.; Takeda H.; Pirottin D.; Tordoir X.; Bibe B.; Bouix J.; Caiment F.; Elsen J. M.; Eychenne F.; Larzul C.; Laville E.; Meish F.; Milenkovic D.; Tobin J.; Charlier C.; Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38: 813–818; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dechesne C. A.; Wei Q.; Eldridge J.; Gannoun-Zaki L.; Millasseau P.; Bougueleret L.; Caterina D.; Paterson B. M. E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway. Mol. Cell. Biol. 14: 5474–5486; 1994.

    PubMed  CAS  Google Scholar 

  • Du R.; An X. R.; Chen Y. F.; Qin J. Some motifs were important for myostatin transcriptional regulation in sheep (Ovis aries). J. Biochem. Mol. Biol. 40: 547–553; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Elliott B.; Renshaw D.; Getting S.; Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. (Oxf) 205: 324–340; 2012.

    Article  CAS  Google Scholar 

  • Funkenstein B.; Balas V.; Rebhan Y.; Pliatner A. Characterization and functional analysis of the 5′ flanking region of Sparus aurata myostatin-1 gene. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153: 55–62; 2009.

    Article  PubMed  Google Scholar 

  • Garikipati D. K.; Gahr S. A.; Rodgers B. D. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes. J. Endocrinol. 190: 879–888; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Gentry B. A.; Ferreira J. A.; Phillips C. L.; Brown M. Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 43: 49–57; 2011.

    Article  PubMed  Google Scholar 

  • Georges M. When less means more: impact of myostatin in animal breeding. Immunol. Endocr. Metab. Agents Med. Chem. 10: 240–248; 2010.

    Article  CAS  Google Scholar 

  • Gu Z.; Zhu D.; Li N.; Li H.; Deng X.; Wu C. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China C Life Sci. 47: 25–30; 2004.

    Article  CAS  Google Scholar 

  • Hamrick M. W.; McPherron A. C.; Lovejoy C. O.; Hudson J. Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone 27: 343–349; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Han S. H.; Cho I. C.; Ko M. S.; Kim E. Y.; Park S. P.; Lee S. S.; Oh H. S. A promoter polymorphism of MSTN g.-371T > A and its associations with carcass traits in Korean cattle. Mol. Biol. Rep. 39: 3767–3772; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Heidt A. B.; Rojas A.; Harris I. S.; Black B. L. Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol. Cell. Biol. 27: 5910–5920; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hill E. W.; Gu J.; Eivers S. S.; Fonseca R. G.; McGivney B. A.; Govindarajan P.; Orr N.; Katz L. M.; MacHugh D. E. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5: e8645; 2010.

    Article  PubMed  Google Scholar 

  • Jane D. T.; Morvay L. C.; Koblinski J.; Yan S.; Saad F. A.; Sloane B. F.; Dufresne M. J. Evidence that E-box promoter elements and MyoD transcription factors play a role in the induction of cathepsin B gene expression during human myoblast differentiation. Biol. Chem. 383: 1833–1844; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jiao J.; Yuan T.; Zhou Y.; Xie W.; Zhao Y.; Zhao J.; Ouyang H.; Pang D. Analysis of myostatin and its related factors in various porcine tissues. J. Anim. Sci. 89: 3099–3106; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kubota K.; Sato F.; Aramaki S.; Soh T.; Yamauchi N.; Hattori M. A. Ubiquitous expression of myostatin in chicken embryonic tissues: its high expression in testis and ovary. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148: 550–555; 2007.

    Article  PubMed  Google Scholar 

  • Kumar S.; Tamura K.; Nei M. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5: 150–163; 2004.

    Article  PubMed  CAS  Google Scholar 

  • McPherron A. C.; Lawler A. M.; Lee S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell M. D.; Osepchook C. C.; Leung K. C.; McMahon C. D.; Bass J. J. Myostatin is a human placental product that regulates glucose uptake. J. Clin. Endocrinol. Metab. 91: 1434–1437; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Peiris H. N.; Ponnampalam A. P.; Osepchook C. C.; Mitchell M. D.; Green M. P. Placental expression of myostatin and follistatin-like-3 protein in a model of developmental programming. Am. J. Physiol. Endocrinol. Metab. 298: E854–E861; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Salerno M. S.; Thomas M.; Forbes D.; Watson T.; Kambadur R.; Sharma M. Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am. J. Physiol. Cell Physiol. 287: C1031–C1040; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos I.; Cross I.; Macha J.; Martinez-Rodriguez G.; Krylov V.; Rebordinos L. Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits. ScientificWorldJournal 2012: 369802; 2012.

    Article  PubMed  Google Scholar 

  • Sato F.; Kurokawa M.; Yamauchi N.; Hattori M. A. Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am. J. Physiol. Cell Physiol. 291: C538–C545; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sharma M.; Kambadur R.; Matthews K. G.; Somers W. G.; Devlin G. P.; Conaglen J. V.; Fowke P. J.; Bass J. J. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 180: 1–9; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sjakste T.; Paramonova N.; Grislis Z.; Trapina I.; Kairisa D. Analysis of the single-nucleotide polymorphism in the 5′UTR and part of intron I of the sheep MSTN gene. DNA Cell Biol. 30: 433–444; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Spiller M. P.; Kambadur R.; Jeanplong F.; Thomas M.; Martyn J. K.; Bass J. J.; Sharma M. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22: 7066–7082; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Stratil A.; Kopecny M. Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8; MSTN) gene. Anim. Genet. 30: 468–470; 1999.

    PubMed  CAS  Google Scholar 

  • Sundaresan NR.; Saxena VK.; Singh R.; Jain P.; Singh KP.; Anish D.; Singh N.; Saxena M.; Ahmed KA. Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus). Res Vet Sci. 85: 86–91; 2008.

    Google Scholar 

  • Zhang G.; Dai G.; Wang J.; Wei Y.; Ding F.; Li Z.; Zhao X.; Xie K.; Wang W. Polymorphisms in 5′-upstream region of the myostatin gene in four chicken breeds and its relationship with growth traits in the Bian chicken. Afr. J. Biotechnol. 11: 9677–9682; 2012.

    Article  CAS  Google Scholar 

  • Zhang G.; Ding F.; Wang J.; Dai G.; Xie K.; Zhang L.; Wang W.; Zhou S. Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken. Biochem. Genet. 49: 9–19; 2011a.

    Article  PubMed  Google Scholar 

  • Zhang G.; Zhao X.; Wang J.; Ding F.; Zhang L. Effect of an exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Anim. Genet. 43: 458–459; 2011b.

    Article  PubMed  Google Scholar 

  • Zheng Y. C.; Lin Y. Q.; Yue Y.; Xu Y. O.; Jin S. Y. Expression profiles of myostatin and calpastatin genes and analysis of shear force and intramuscular fat content of yak longissimus muscle. Czech J. Anim. Sci. 56: 544–550; 2011.

    Google Scholar 

  • Zhu Y. Y.; Liang H. W.; Li Z.; Luo X. Z.; Li L.; Zhang Z. W.; Zou G. W. Polymorphism of MSTN gene and its association with growth traits in yellow catfish (Pelteobagruse fulvidraco). Yi Chuan 34: 72–78; 2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shandong agriculture good quality seed project, the using and innovation research of high-quality beef cattle grant, and the using and innovation research of poultry grant of Shandong province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushuang Lin.

Additional information

Editor: T. Okamoto

Wei Hu and Songyu Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Chen, S., Zhang, R. et al. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin. In Vitro Cell.Dev.Biol.-Animal 49, 417–423 (2013). https://doi.org/10.1007/s11626-013-9621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9621-5

Keywords

Navigation