Skip to main content
Log in

Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The present study was designed to investigate whether gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] and buffalo follicular fluid (bFF) supplementation in maturation medium influences the transcript abundance of germ cell marker genes [maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15)] mRNA in buffalo (Bubalus bubalis) oocytes. Buffalo ovaries were collected from local abattoir, oocytes were aspirated from antral follicles (5–8 mm) and matured in vitro using two different maturation regimens, viz, group A: gonadotropin (FSH and LH) and group B: non-gonadotropin-supplemented maturation medium containing 20% buffalo follicular fluid (bFF). mRNA was isolated from immature (330) and in vitro matured oocytes from both the groups (A, 320; B, 340), and reverse transcribed using Moloney murine leukemia virus reverse transcriptase. Expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA transcripts were analyzed in oocytes of both maturation groups as well as immature oocytes using real-time PCR. QPCR results showed that GDF9 and BMP15 transcripts were significantly (p < 0.05) influenced with gonadotropins and bFF supplementation during in vitro maturation of buffalo oocyte; however, MATER and ZAR1 transcripts were not influenced with gonadotropins and bFF supplementation in vitro. These results indicated that the expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA were varied differentially during in vitro maturation of buffalo oocyte and were found to be gonadotropins (FSH and LH) or bFF dependent for GDF9 and BMP15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Aaltonen J.; Laitinen M. P.; Vuojolainen K.; Jaatinen R.; Horelli-Kuitunen N.; Seppa L.; Louhio H.; Tuuri T.; Sjoberg J.; Butzow R.; Hovata O.; Dale L.; Ritvos O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab. 84: 2744–2750; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Avery B.; Strobech L.; Jacobsen T.; Bogh B. I.; Greve T. In vitro maturation of bovine cumulus oocyte complexes in undiluted follicular fluid: effect on nuclear maturation, pronucleus formation and embryo development. Theriogenology 59: 987–999; 2003.

    Article  PubMed  Google Scholar 

  • Ayalon D.; Tsafriri A.; Lindner H. R.; Cordova T.; Harell A. Serum gonadotrophin levels in pro-oestrous rats in relation to the resumption of meiosis by the oocytes. J. Reprod. Fertil. 31: 51–58; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Byskov A. G.; Yding A. C.; Hossaini A.; Guoliang X. Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol. Reprod. Dev. 46: 296–305; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cetica P. D.; Dalvit G. C.; Beconi M. T. Study of evaluation criteria used for in vitro bovine oocyte selection and maturation. Biocell 23(2): 125–133; 1999.

    PubMed  CAS  Google Scholar 

  • Chang H.; Brown C. W.; Matzuk M. M. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr. Rev. 23: 787–823; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dade S.; Callebaut I.; Mermillod P.; Monget P. Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte. FEBS Lett. 555: 533–538; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dube J. L.; Wang P.; Elvin J.; Lyons K. M.; Celeste A. J.; Matzuk M. M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12: 1809–1817; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Elvin J. A.; Clark A. T.; Wang P.; Wolfman N. M.; Matzuk M. M. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13: 1035–1048; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gosden R. G. Oogenesis as a foundation for embryogenesis. Mol. Cell. Endocrinol. 186: 149–153; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Goto T.; Jones G. M.; Lolatgis N.; Pera M. F.; Trounson A. O.; Monk M. Identification and characterisation of known and novel transcripts expressed during the final stages of human oocyte maturation. Mol. Reprod. Dev. 62: 13–28; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hamatani T.; Carter M. G.; Sharov A. A.; Ko M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell. 6: 117–131; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hassold T.; Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2: 280–291; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ho Y.; Wigglesworth K.; Eppig J. J.; Schultz R. M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41: 232–238; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Juengel J. L.; Hudson N. L.; Heath D. A.; Smith P.; Reader K. L.; Lawrence S. B.; O’Connell A. R.; Laitinen M. P. E.; Cranfield M.; Groome N. P.; Ritvos O.; McNatty K. P. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67: 1777–1789; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. S.; Seo Y. I.; Yin X. J.; Cho S. G.; Lee S. S.; Kim N. H. Effect of follicle stimulation hormone and luteinizing hormone on cumulus cell expansion and in vitro nuclear maturation of canine oocytes. Reprod. Domest. Anim. 42: 561–565; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li Y.; Feng H. L.; Cao Y. J.; Zheng G. J.; Yang Y.; Mullen S. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil. Steril. 85: 827–832; 2006.

    Article  PubMed  Google Scholar 

  • Luvoni G. C.; Chigioni S.; Allievi E.; Macis D. Factors involved in vivo and in vitro maturation of canine oocytes. Theriogenology 63(1): 41–59; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lyons K. M.; Pelton R. W.; Hogan B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 3: 1657–1668; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mattioli M. Transduction mechanisms for gonadotropin-induced oocyte maturation in mammals. Zygote 2: 347–349; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Mattioli M.; Bacci M. L.; Galeati G.; Seren E. Effects of LH and FSH on the maturation of pig oocytes in vitro. Theriogenology 36: 95–105; 1991.

    Article  PubMed  CAS  Google Scholar 

  • McGrath S. A.; Esquela A. F.; Lee S. J. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9: 131–136; 1995.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie L. J.; Pangas S. A.; Carson S. A.; Kovanci E.; Cisneros P.; Buster J. E.; Amato P.; Matzuk M. M. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19: 2869–2874; 2004.

    Article  PubMed  CAS  Google Scholar 

  • McPherron A. C.; Lee S. J. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J. Biol. Chem. 268: 3444–3449; 1993.

    PubMed  CAS  Google Scholar 

  • Niemann H.; Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53: 21–34; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka F.; Yamamoto S.; Erickson G. F.; Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 276: 11387–11392; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pennetier S.; Uzbekova S.; Perreau C.; Papillier P.; Mermillod P.; Dalbie’s-Tran R. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol. Reprod. 71: 1359–1366; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rajhans R.; Saikumar G.; Dubey P. K.; Sharma G. T. Effect of timing of development on total cell number and expression profile of HSP 70.1 and GLUT1 in buffalo (Bubalus bubalis) preimplantation embryo produced in vitro. Cell Biol. Int. 34: 463–468; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Rajkovic A.; Yan M. S. C.; Klysik M.; Matzuk M. Discovery of germ cell-specific transcripts by expressed sequence tag database analysis. Fertil. Steril. 76: 550–554; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rizos D.; Gutierrez-Adan A.; Perez-Garnalo S.; de la Fuente J.; Boland M. P.; Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68: 236–243; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rizos D.; Lonergan P.; Ward F.; Duffy P.; Boland M. P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61: 234–248; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Arredondo A.; Seidel G. E. Effects of follicular fluid during in vitro maturation of bovine oocytes on in vitro fertilization and early embryonic development. Biol. Reprod. 55: 1012–1016; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rosen M. P.; Zamah A. M.; Shen S.; Dobson A. T.; McCulloch E. C.; Rinaudo F. P.; Lamb D. J.; Cedars I. M. The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery. Reprod. Biol. Endocrinol. 7: 35; 2009.

    Article  PubMed  Google Scholar 

  • Samartzi F.; Tsakmakidis I.; Theodosiadou E.; Vainas E. Effect of porcine and ovine FSH on nuclear maturation of pig oocytes in vitro. Reprod. Domest. Anim. 43: 153–156; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J.; Russell D. W. Molecular cloning, Chapter 1. In: Protocol 1–3, Preparation of plasmid DNA by alkaline lysis with SDS. Cold Spring Harbor Laboratory Press, New York; 2001

  • Schoevers E. J.; Kidson A.; Verheijden J. H.; Bevers M. M. Effect of follicle-stimulating hormone on nuclear and cytoplasmic maturation of sow oocytes in vitro. Theriogenology 59: 2017–2028; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sharma G. T.; Prasad S.; Nath A.; Singhal S.; Singh N.; Gade N. E.; Saikumar G. Expression and characterization of constitutive heat shock protein 70.1 (hspa-1a) gene in in-vitro produced and in-vivo derived buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim.; 2012. doi:10.1111/j.1439-0531.2012.02002.x.

  • Sharov A. A.; Piao Y.; Matoba R.; Dudekula D. B.; Qian Y.; VanBuren V.; Falco G.; Martin P. R.; Stagg C. A.; Bassey U. C.; Wang Y.; Carter M. G.; Hamatani T.; Aiba K.; Akutsu H.; Sharova L.; Tanaka T. S.; Kimber W. L.; Yoshikawa T.; Jaradat S. A.; Pantano S.; Nagaraja R.; Boheler K. R.; Taub D.; Hodes R. J.; Longo D. L.; Schlessinger D.; Keller J.; Klotz E.; Kelsoe G.; Umezawa A.; Vescovi A. L.; Rossant J.; Kunath T.; Hogan B. L.; Curci A.; D’Urso M.; Kelso J.; Hide W.; Ko M. S. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol. 1: E74; 2003.

    Article  PubMed  Google Scholar 

  • Sirard M. A.; Desrosier S.; Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 68: S71–S76; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Su Y. Q.; Wu X.; O’Brien M. L.; Pendola F. L.; Denegre J. N.; Matzuk M. M.; Eppig J. J. Synergistic roles of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev. Biol. 276: 64–73; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sutton M. L.; Gilchrist R. B.; Thompson J. G. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9: 35–48; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Thelie A.; Papillier P.; Pennetier S.; Perreau C.; Traverso J. M.; Uzbekova S.; Mermillod P.; Joly C.; Humblot P.; Dalbies-Tran R. Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Dev. Biol. 7: 125; 2007.

    Article  PubMed  Google Scholar 

  • Tong Z. B.; Bondy C. A.; Zhou J.; Nelson L. M. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum. Reprod. 17: 903–911; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z. B.; Gold L.; De Pol A.; Vanevski K.; Dorward H.; Sena P.; Palumbo C.; Bondy C. A.; Nelson L. M. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145: 1427–1434; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z. B.; Gold L.; Pfeifer K. E.; Dorward H.; Lee E.; Bondy C. A.; Dean J.; Nelson L. M. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26: 267–268; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z. B.; Nelson L. M. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140: 3720–3726; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Van Tol H. T.; Van Eijk M. J.; Mummery C. L.; van den Hurk R.; Bevers M. M. Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 45: 218–224; 1996.

    Article  PubMed  Google Scholar 

  • Vitale A. M.; Calvert M. E.; Mallavarapu M.; Yurttas P.; Perlin J.; Herr J.; Coonrod S. Proteomic profiling of murine oocyte maturation. Mol. Reprod. Dev. 74: 608–616; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wang S.; Kou Z.; Jing Z.; Zhang Y.; Guo X.; Dong M.; Wilmut I.; Gao S. Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci. 107: 17639–17644; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Wrenzycki C.; Hermann D.; Carnwath J. W.; Niemann H. Alterations in the relative abundance of gene transcript in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53: 8–18; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wrenzycki C.; Herrmann D.; Keskintepe L. A.; Martins Jr. A.; Sirisathien S.; Brackett B. Effects of culture system and protein supplementation on mRNA expression in preimplantation bovine embryos. Hum. Reprod. 16: 893–901; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wu X.; Viveiros M. M.; Eppig J. J.; Bai Y.; Fitzpatrick S. L.; Matzuk M. M. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33: 187–191; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Xia G.; Byskov A. G.; Andersen C. Y. Cumulus cells secrete a meiosis-inducing substance by stimulation with forskolin and dibutyric cyclic adenosine monophosphate. Mol. Reprod. Dev. 39: 17–24; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ye J.; Campbell K. H.; Craigon J.; Luck M. R. Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide. Biol. Reprod. 72: 399–406; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M.; Ishizaki Y.; Kawagishi H.; Bamba K.; Kojima Y. Effects of pig follicular fluid on maturation of pig oocytes in vitro and on their subsequent fertilizing and developmental capacity in vitro. J. Reprod. Fertil. 95: 481–488; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Zeng F.; Schultz R. M. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68: 31–39; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zhang P.; Ni X.; Guo Y.; Guo X.; Wang Y.; Zhou Z.; Huo R.; Sha J. Proteomic-based identification of maternal proteins in mature mouse oocytes. BMC Genomics 10: 348; 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by NFBSFARA, Indian Council of Agriculture Research, New Delhi, Government of India.

Conflict of interest

The authors indicate no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Taru Sharma.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, A., Sharma, V., Dubey, P.K. et al. Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte. In Vitro Cell.Dev.Biol.-Animal 49, 34–41 (2013). https://doi.org/10.1007/s11626-012-9561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9561-5

Keywords

Navigation