Skip to main content
Log in

Changes in proteolytic enzymes mRNAs and proteins relevant for meat quality during myogenesis and hypoxia of primary bovine satellite cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The current study was conducted to evaluate the functions of μ-calpain (CAPN1), calpastatin, HSPs (heat shock proteins), and caspases during myogenesis and cell death induced by sodium azide (NaN3) hypoxia. The cell samples were divided into three groups: satellite cells formed at confluent monolayer (stage 1), stage 1 cells fusion into myotubes on d eight post-differentiation (stage 2), and stage 2 cells treated with 1 mM NaN3 for 24 h (stage 3). Real-time RT-PCR showed that stage 2 cells had increased CAPN1, calpastatin, caspase 7, and CARD9 (Caspase activation and recruitment domain 9) mRNA expressions compared to stage 1 cells (*p < 0.05). By Western blotting caspase 3, caspase 7, caspase 8, and caspase 9 protein levels increased in cells at stage 2 compared to cells at stage 1 (*p < 0.05). Real-time RT-PCR showed that stage 3 cells had increased CAPN1, calpastatin, caspase 7, HSP70 (70 kDA heat shock proteins), and HSP90 (90 kDA heat shock proteins-alpha) and decreased CARD9 mRNA expression compared to stage 2 cells (*p < 0.05). Stage 3 samples had increase caspase 7 and caspase 12 activities compared to stage 2 samples, and by Western blotting protein levels of both HSP70 and HSP90 expressions, increased significantly under hypoxia condition (*p < 0.05). Here, we conclude that CAPN1, calpastatin, caspase 3, caspase 7, caspase 8, and CARD9 have important roles for satellite cell myogenesis; and that caspase 7, 12, HSP70, and HSP90 are involved in the process of apoptotic cell death under hypoxia conditions and we speculate that these proteins may be involved in early postmortem proteolysis and meat tenderization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Ahn J. H.; Ko Y. G.; Park W. Y.; Kang Y. S.; Chung H. Y.; Seo J. S. Suppression of ceramide-mediated apoptosis by HSP70. Mol. Cells 9: 200–206; 1999.

    PubMed  CAS  Google Scholar 

  • Allen R. E. Muscle cell culture as a tool in animal growth research. Fed. Proc. 46: 290–294; 1987.

    PubMed  CAS  Google Scholar 

  • Altschuld R. A.; Hostelter J. R.; Brierley G. P. Response of isolated rat heart cells to hypoxia, reoxygenation and acidosis. Circ. Res. 49: 307–316; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Balcerzak D.; Cottin P.; Poussard S.; Cucuron A.; Brustis J. J.; Ducastaing A. Calpastatin-modulation of m-calpain activity is required for myoblast fusion. Eur. J. Cell Biol. 75: 247–253; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Barnoy S.; Glaser T.; Kosower N. S. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem. Biophys. Res. Commun. 220: 933–938; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Barnoy S.; Supino-Rosin L.; Kosower N. S. Regulation of calpain and calpastatin in differentiating myoblasts: mRNA levels, protein synthesis and stability. Biochem. J. 351: 413–420; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Beere H. M. The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J. Cell Sci. 117: 2641–2651; 2000.

    Article  Google Scholar 

  • Belizario J. E.; Lorite M. J.; Tisdale M. J. Cleavage of caspases-1, -3, -6, -8 and −9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia. Br. J. Cancer 84: 1135–1140; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bertin J. Y.; Guo L.; Wang S. M.; Srinivasula M. D.; Jacobson J. L.; Poyet S.; Merriam M. Q.; Du M. J.; Dyer K. E.; Robison P. S.; DiStefano A. E. S. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappaB. J. Biol. Chem. 275: 41082–41086; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R. Enzymatic liberation of myogenic cells from adult rat muscle. Anat. Rec. 180: 645–662; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Brustis J. J.; Elamrani N.; Balcerzak D.; Safwate A.; Soriano M.; Poussard S.; Cottin P.; Ducastaing A. Rat myoblast fusion requires exteriorized m-calpain activity. Eur. J. Cell Biol. 64(2): 320–327; 1994.

    PubMed  CAS  Google Scholar 

  • Cassar-Malek I.; Langloisa N.; Picarda B.; Geaya Y. Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domest. Anim. Endocrinol. 17: 373–388; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Chen S. J.; Bradley M. E.; Lee T. C. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: modulation by calcium-regulated proteases and protein kinases. Mol. Cell Biochem. 178: 141–149; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Concannon C. G.; Gorman A. M.; Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis 8: 61–70; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cottin P.; Brustis J. J.; Poussard S.; Elamrani N.; Broncard S.; Ducastaing A. Ca2+-dependent proteinases (calpains) and muscle cell differentiation. Biochim. Biophys. Acta 1223: 170–178; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Creagh E. M.; Carmody R. J.; Cotter T. G. Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells. Exp. Cell Res. 257: 58–66; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dodson M. V.; Martin E. L.; Brannon M. A.; Mathison B. A.; Mcfarland D. C. Optimization of bovine satellite cell derived myotube formation in vitro. Tissue Cell 19: 159–166; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Dodson M. V.; McFarland D. C.; Martin E. L.; Brannon M. A. Isolation of satellite cells from ovine skeletal muscle. J. Tissue Cult. Methods 10: 233–237; 1986.

    Article  Google Scholar 

  • Earnshaw W. C.; Martins L. M.; Kaufmann S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383–424; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ebisui C.; Tsujinaka T.; Kido Y.; Iijima S.; Yano M.; Shibata H.; Tanaka T.; Mori T. Role of intracellular proteases in differentiation of L6 myoblast cells. Biochem. Mol. Biol. Int. 32: 515–521; 1994.

    PubMed  CAS  Google Scholar 

  • Fernando P.; Kelly J. F.; Balazsi K.; Slack R. S.; Megeney L. A. Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. U.S.A. 99: 11025–11030; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Fidzianska A.; Kaminska A.; Glinka Z. Muscle cell death. Ultrastructural difference between muscle cell necrosis and apoptosis. Neuropatol. Pol. 29: 19–28; 1991.

    PubMed  CAS  Google Scholar 

  • Fischer D.; Matten J.; Reimann J.; Bönnemann C.; Schröder R. Expression, localization and functional divergence of αB-crystallin and heat shock protein 27 in core myopathies and neurogenic atrophy. Acta Neuropathol. 101: 297–304; 2002.

    Google Scholar 

  • Fuentes-Prior P.; Salvesen G. S. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384: 201–232; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Goll D. E.; Thompson V. F.; Li H.; Wei W.; Cong J. The calpain system. Physiol. Rev. 83: 731–801; 2003.

    PubMed  CAS  Google Scholar 

  • Gustafsson A. B.; Gottlieb R. A. Mechanisms of apoptosis in the heart. J. Clin. Immunol. 23: 447–459; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M.; Inomata M.; Kawashima S. Function of calpains: possible involvement in myoblast fusion. Adv. Exp. Med. Biol. 389: 149–154; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hwang I. H. Application of gel-based proteome anaysis techniques to studying pros-mortem proteolysis in meat. Asian-Australasian J. Anim. Sci. 17: 1296–1302; 2004.

    CAS  Google Scholar 

  • Inomata K.; Tanaka H. Protective effect of benidipin against sodium azide-induced cell death in cultured neonatal rat cardiac myocytes. J. Pharmacol. Sci. 93: 163–170; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M.; Wissing D.; Kokholm K.; Kallunki T.; Egeblad M. Hsp70 exerts its anit-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17: 6124–6134; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kemp C. M.; Bardsley R. G.; Parr T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. J. Anim. Sci. 84: 2841–2846; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kemp C. M.; King D. A.; Shackelford S. D.; Wheeler T. L.; Koohmaraie M. The caspase proteolytic system in callipyge and normal lambs in longissimus, semimembranosus, and infraspinatus muscles during postmortem storage. J. Anim. Sci. 87: 2943–2951; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kemp C. M.; Sensky P. L.; Bardsley R. G.; Buttery P. J.; Parr T. Tenderness-an enzymatic view. Meat Sci. 84(2): 248–256; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kook S. H.; Choi K. C.; Son Y. O.; Lee K. Y.; Hwang I. H.; Lee H. J.; Chang J. S.; Choi I. H.; Lee J. C. Satellite cells isolated from adult hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells 22: 239–245; 2006.

    PubMed  CAS  Google Scholar 

  • Kositprapa C.; Zhang B.; Berger Jr. S.; Canty J. M.; Lee T. C. Calpain-mediated proteolytic cleavage of troponin I induced by hypoxia or metabolic inhibition in cultured neonatal cardiomyocytes. Mol. Cell. Biochem. 214: 47–55; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kressel M.; Groscurth P. Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA. Cell Tissue Res. 278: 549–556; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kwak K. B.; Chung S. S.; Kim O. M.; Kang M. S.; Ha D. B.; Chung C. H. Increase in the level of m-calpain correlates with the elevated cleavage of filamin during myogenic differentiation of embryonic muscle cells. Biochim. Biophys. Acta 1175: 243–249; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburgh C. Role of apoptosis in sarcopenia. J. Gerontol. A-Biol. Sci. Med. Sci. 58: 999–1001; 2003.

    Article  PubMed  Google Scholar 

  • Li C. Y.; Lee J. S.; Ko Y. G.; Kim J. I.; Seo J. S. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. 275: 25665–25671; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mauro A. Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493–495; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Mosser D. D.; Caron A. W.; Bourget L.; Denis-Larose C.; Massie B. Role of human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 17: 5317–5327; 1997.

    PubMed  CAS  Google Scholar 

  • Ohata H.; Trollinger D. R.; Lemasters J. J. Changes in shape and viability of cultured adult rabbit cardiac myocytes during ischemia/reperfusion injury. Res. Commun. Mol. Pathol. Pharmacol. 86: 259–271; 1994.

    PubMed  CAS  Google Scholar 

  • Ouali A.; Herrera-Mendez C. H.; Coulis G.; Becila S.; Boudjellal A.; Aubry L.; Sentandreu M. A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 74: 44–58; 2006.

    Article  PubMed  Google Scholar 

  • Pandey P.; Saleh A.; Nakazawa A.; Kumar S.; Srinivasula S. M.; Kumar R.; Weichselbaum V.; Nalin C.; Alnemri E. S.; Kufe D.; Kharbanda S. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19: 4310–4322; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Poussarda S.; Cottin P.; Brustisa J. J.; Talmata S.; Elamrania N.; Ducastainga A. Quantitative measurement of calpain I and II mRNAs in differentiating rat muscle cells using a competitive polymerase chain reaction method. Bull. Soc. Chim. Biol. 75: 885–890; 1993.

    Google Scholar 

  • Sandri M. Apoptotic signalling in skeletal muscle fibers during atrophy. Curr. Opin. Clin. Nutr. Metab. Care 5: 249–253; 2002.

    Article  PubMed  Google Scholar 

  • Sandri M.; Meslemani A. H.; Sandri C.; Schjerling P.; Vissing K.; Andersen J. L.; Rossini K.; Carraro U.; Angelini C. Caspase 3 expression correlates with skeletal muscle apoptosis in Duchenne and facioscapulo human muscular dystrophy. A potential target for pharmacological treatment? J. Neuropathol. Exp. Neurol. 60: 302–312; 2001.

    PubMed  CAS  Google Scholar 

  • Schollmeyer J. Possible role of calpain I and calpain II in differentiating muscle. Exp. Cell Res. 163: 413–422; 1981.

    Article  Google Scholar 

  • Solary E.; Dubrez-Daloz L. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446–4453; 2002.

    Article  PubMed  Google Scholar 

  • Spencer M. J.; Croall D. E.; Tidball J. G. Calpains are activated in necrotic fibers from mdx dystrophic mice. J. Biol. Chem. 270: 10909–10914; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Spencer M. J.; Tidball J. G. Calpain translocation during muscle fiber necrosis and regeneration in dystrophindeficient mice. Exp. Cell Res. 226: 264–272; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Takumaa K.; Moria K.; Leeb E.; Enomotob R.; Babac A.; Matsuda T. Heat shock inhibits hydrogen peroxide-induced apoptosis in cultured astrocytes. Brain Res. 946: 232–238; 2002.

    Article  Google Scholar 

  • Temm-Grove C. J.; Wert D.; Thompson V. F.; Allen R. E.; Goll D. E. Microinjection of calpastatin inhibits fusion in myoblasts. Exp. Cell Res. 247: 293–303; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Theil P. K.; Sørensen I. L.; Therkildsen M.; Oksbjerg N. Changes in proteolytic enzyme mRNAs relevant for meat quality during myogenesis of primary porcine satellite cells. Meat Sci. 73: 335–343; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Vaisid T.; Kosower N. S.; Barnoy S. Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk between the caspase and calpain systems. Biochim. Biophys.Acta - Mol. Cell Res. 1743: 223–230; 2005.

    Article  CAS  Google Scholar 

  • Vignon X.; Beaulaton J.; Ouali A. Ultrastructural localization of calcium in post-mortem bovine muscle: a cytochemical and X-ray microanalytical study. Histochem. J. 21: 403–411; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Voss O. H.; Batra S.; Kollattukudy S. J.; Gonzalez-Mejja M. E.; Smith J. B.; Doseff A. I. Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activation. J. Biol. Chem. 282: 25088–25099; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Welch W. J. Mammalian stressre sponse: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72: 1063; 1992.

    PubMed  CAS  Google Scholar 

  • Wilson K. P.; Black J. A.; Thomson J. A.; Kim E. E.; Griffith J. P.; Navia M. A.; Murcko M. A.; Chambers S. P.; Aldape R. A.; Raybuck S. A. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370(6487): 270–5; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

It should be acknowledged that this work was partly supported by a grant from the Next-Generation BioGreen 21 Program(No. PJ008191) and a research fund for FTA issues (No. PJ907055), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to InHo Hwang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.B., Pandurangan, M. & Hwang, I. Changes in proteolytic enzymes mRNAs and proteins relevant for meat quality during myogenesis and hypoxia of primary bovine satellite cells. In Vitro Cell.Dev.Biol.-Animal 48, 359–368 (2012). https://doi.org/10.1007/s11626-012-9513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9513-0

Keywords

Navigation