Skip to main content
Log in

Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alon A.; Heckler E. J.; Thorpe C.; Fass D. QSOX contains a seudo-dimer of functional and degenerate sulfhydryl oxidase domains. FEBS Letters 584: 1521–1525; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ang S. K.; Lu H. Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J Biol Chem 284: 28754–28761; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Antwi K.; Hostetter G.; Demeure M. J.; Katchman B. A.; Decker G. A.; Ruiz Y.; Sielaff T. D.; Koep L. J.; Lake D. F. Analysis of the plasma peptidome from pancreas cancer patients connects a peptide in plasma to overexpression of the parent protein in tumors. J Proteome Res 8: 4722–4731; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bach R. D.; Dmitrenko O.; Thorpe C. Mechanism of thiolate-disulfide interchange reaction ns in biochemistry. J Org Chem 73: 12–21; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baker K. M.; Chakravarthi S.; Langton K. P.; Sheppard A. M.; Lu H.; Bulleid N. J. Low reduction potential of Ero1alpha regulatory disulphides ensures tight control of substrate oxidation. EMBO J 27: 2988–2997; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Benayoun B.; Esnard-Fève A.; Castella S.; Courty Y.; Esnard F. Rat seminal vesicle FAD-dependent sulfhydryl oxidase. Biochemical characterization and molecular cloning of a member of the new sulfhydryl oxidase/quiescin Q6 gene family. J Biol Chem 276: 13830–13837; 2001.

    PubMed  CAS  Google Scholar 

  • Boulanger C.M.; Amabile N.; Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48: 180–186; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chang T.S.; Morton B. Epididymal sulfhydryl oxidase: a sperm-protective enzyme from the male reproductive tract. Biochem Biophys Res Commun 66: 309–315; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Coppock D. L.; Cina-Poppe D.; Gilleran S. The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: thioredoxin and ERV1. Genomics 54: 460–468; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Coppock D.; Kopman C.; Gudas J.; Cina-Poppe DA. Regulation of the quiescence-induced genes: quiescin Q6, decorin, and ribosomal protein S29. Biochem Biophys Res Commun 269: 604–610; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Coppock D. L.; Kopman C.; Scandalis S.; Gilleran S. Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ 4: 483–493; 1993.

    PubMed  CAS  Google Scholar 

  • Coppock D. L.; Thorpe C. Multidomain flavin-dependent sulfhydryl oxidases. Antioxid Redox Signal 8: 300–311; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Distler J. H.; Akhmetshina A.; Dees C.; Jüngel A.; Stürzl M.; Gay S.; Pisetsky D. S.; Schett G.; Distler O. Induction of apoptosis in circulating angiogenic cells by microparticles. Arthritis Rheum 63: 2067–2077; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Francavilla A.; Hagiya M.; Porter K.A.; Polimeno L.; Ihara I.; Starzl T. E. Augmenter of liver regeneration: Its place in the universe of hepatic growth factors. Hepatology 20: 747–757; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hansson G. K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685–1695; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Heckler E. J.; Rancy P. C.; Kodali V. K.; Thorpe C. Generating disulfides with the Quiescin-sulfhydryl oxidases. Biochim Biophys Acta 1783: 567–577; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hellebrekers D. M.; Melotte V.; Viré E.; Langenkamp E.; Molema G.; Fuks F.; Herman J. G.; Van Criekinge W.; Griffioen A. W.; van Engeland M. Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67: 4138–4148; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg R. P.; Caranfa M. J.; Hecht S. M. On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry 28: 4629–4638; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hoober K. L.; Glynn N. M.; Burnside J.; Coppock D. L.; Thorpe C. Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases. J Biol Chem 274: 31759–31762; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Houston N. L.; Fan C.; Xiang Q. Y.; Schulze J. M.; Jung R.; Boston R. S. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol 137: 762–778; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jaje J.; Wolcott H. N.; Fadugba O.; Cripps D.; Yang A. J.; Mather I. H.; Thorpe C. A. A flavin-dependent sulfhydryl oxidase in bovine milk. Biochemistry 46: 13031–13040; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jordan P. A.; Gibbins J. M. Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal 8: 312–324; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kockx M. M.; Herman A. G. Apoptosis in atherogenesis: implications for plaque destabilization. Eur Heart J 19: G23-28; 1998

    PubMed  Google Scholar 

  • Kodali V. K.; Thorpe C. Oxidative protein folding and the Quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal 13: 1217–1230; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Laurindo F. R.; Fernandes D. C.; Amanso A. M.; Lopes L. R.; Santos C. X. Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases. Antioxid Redox Signal 10: 1101–1113; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Liberman M.; Bassi E.; Martinatti M. K.; Lario F. C.; Wosniak Jr J.; Pomerantzeff P. M.; Laurindo F. R. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol 28: 463–470; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method Methods 25: 402–408; 2001.

    CAS  Google Scholar 

  • Mairet-Coello G.; Tury A.; Fellmann D.; Jouvenot M.; Griffond B. Expression of SOx-2, a member of the FADdependent sulfhydryl oxidase = quiescin Q6 gene family, in rat brain. Neuroreport 13: 2049–2051; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Mallat Z.; Corbaz A.; Scoazec A.; Graber P.; Alouani S.; Esposito B.; Humbert Y.; Chvatchko Y.; Tedgui A. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89: E41-45; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Morel C.; Adami P.; Musard J. F.; Duval D.; Radom J.; Jouvenot M. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 313: 3971–3982; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Musard J. F.; Sallot M.; Dulieu P.; Fraîchard A.; Ordener C.; Remy-Martin J. P.; Jouvenot M.; Adami P. Identification and expression of a new sulfhydryl oxidase SOx-3 during the cell cycle and the estrus cycle in uterine cells. Biochem Biophys Res Commun 287: 83–91; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski M. C.; Kistler W. S. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry 19: 2639–2645; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Portes K. F.; Ikegami C. M.; Getz J.; Martins A. P.; de Noronha L.; Zischler L. F.; Klassen G.; Camargo A. A.; Zanata S. M.; Bevilacqua E.; Nakao L. S. Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Histol 39: 217–225; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Porto I.; De Maria G. L.; Di Vito L.; Camaioni C.; Gustapane M.; Biasucci L. M. Microparticles in health and disease: small mediators, large role? Curr Vasc Pharmacol; 10; 2011 (in press)

  • Rautou P. E.; Leroyer A. S.; Ramkhelawon B.; Devue C.; Duflaut D.; Vion A. C.; Nalbone G.; Castier Y.; Leseche G.; Lehoux S.; Tedgui A.; Boulanger C. M. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 108: 335–343; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Simák J.; Holada K.; Vostal J. G. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol 28: 3–11; 2002.

    Google Scholar 

  • Thorpe C.; Coppock D. L. Generating disulfides in multicellular organisms: Emerging roles for a new flavoprotein family. J Biol Chem 282: 13929–13933; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe C.; Hoober K. L.; Raje S.; Glynn N. M.; Burnside J.; Turi G. K.; Coppock D. L. Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch Biochem Biophys 405: 1–12; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tury A.; Mairet-Coello G.; Esnard-Fève A.; Benayoun B.; Risold P. Y.; Griffond B.; Fellmann D. Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323: 91–103; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wang W.; Winther J. R.; Thorpe C. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase. Biochemistry 46: 3246–3254; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wittke I.; Wiedemeyer R.; Pillmann A.; Savelyeva L.; Westermann F.; Schwab M. Neuroblastoma-derived sulfhydryl oxidase, a new member of the sulfhydryl oxidase/Quiescin6 family, regulates sensitization to interferon gamma-induced cell death in human neuroblastoma cells. Cancer Res 63: 7742–7752; 2003.

    PubMed  CAS  Google Scholar 

  • Zanata S. M.; Luvizon A. C.; Batista D. F.; Ikegami C. M.; Pedrosa F. O.; Souza E. M.; Chaves D. F.; Caron L. F.; Pelizzari J. V.; Laurindo F. R.; Nakao L. S. High levels of active quiescin Q6 sulfhydryl oxidase (QSOX) are selectively present in fetal serum. Redox Rep 10: 319–323; 2005

    Article  PubMed  CAS  Google Scholar 

  • Zheng W.; Chu Y.; Yin Q.; Xu L.; Yang C.; Zhang W.; Tang Y.; Yang Y. Crucial effect of the first CXXC motif of human QSOX 1b on the activity to different substrates. J Biochem 149: 293–300; 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP, CAPES, and CNPq (Institutos do Milenio Redoxoma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia R. de Andrade.

Additional information

Editor: T. Okamoto

Claudia R. de Andrade and Beatriz S. Stolf contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Andrade, C.R., Stolf, B.S., Debbas, V. et al. Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis. In Vitro Cell.Dev.Biol.-Animal 47, 716–727 (2011). https://doi.org/10.1007/s11626-011-9461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9461-0

Keywords

Navigation