Skip to main content

Advertisement

Log in

Comparison of long-term retinoic acid-based neural induction methods of bone marrow human mesenchymal stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The differentiation of human mesenchymal stem cells (hMSCs) into neural cells in vitro provides a potential tool to be utilized for cell therapy of neurodegenerative disorders. Although previous studies repeated different protocols for the induction of neural cells from hMSCs in vitro, the results were not in complete agreement. In this study, we have attempted to compare three of these neural induction methods; retinoic acid (RA) treatment, RA treatment in serum reduced conditions, and treatment using other chemical compounds (dimethyl sulfoxide and potassium chloride) along with RA by real-time cell analysis and immunofluorescent staining of neural markers. RA treatment led to a slow progression of cells into neural-like morphology with the expression of neural protein neurofilament whereas reducing serum during RA treatment caused a much more extended differentiation process. Additionally, neural-like morphology was persistent in the later periods of differentiation in RA treatment. On the other hand, chemical induction caused cell shrinkages mimicking neural-like morphology in a short time and loss of this morphology along with increased cell death in later periods. Among the three methods compared, RA treatment was the most reliable one in terms of stability of differentiation and neural protein expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 6.
Figure 5.

Similar content being viewed by others

References

  • Berry L.; Grant M. E.; Mcclure J.; Rooney P. Bone-marrow-derived chondrogenesis in vitro. J Cell Sci 101: 333–342; 1992.

    PubMed  Google Scholar 

  • Bertani N.; Malatesta P.; Volpi G.; Sonego P.; Perris R. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 118(Pt 17): 3925–3936; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Bianco P.; Robey P. G.; Simmons P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4): 313–319; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bobis S.; Jarocha D.; Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4): 215–230; 2006.

    PubMed  CAS  Google Scholar 

  • Choi C. B.; Cho Y. K.; Prakash K. V.; Jee B. K.; Han C. W.; Paik Y. K.; Kim H. Y.; Lee K. H.; Chung N.; Rha H. K. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 350(1): 138–146; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dantuma E.; Merchant S.; Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther 1(5): 37; 2010.

    Article  PubMed  Google Scholar 

  • Dominici M.; Le Blanc K.; Mueller I.; Slaper-Cortenbach I.; Marini F.; Krause D.; Deans R.; Keating A.; Prockop D.; Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315–317; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fang L. J.; Fu X. B.; Sun T. Z.; Li J. F.; Cheng B.; Yang Y. H.; Wang Y. X. An experimental study on the differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells. Zhonghua Shao Shang Za Zhi 19(1): 22–24; 2003.

    PubMed  Google Scholar 

  • Herbertson A.; Aubin J. E. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures. Bone 21(6): 491–500; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Huang G. T.; Gronthos S.; Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9): 792–806; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Jackson L.; Jones D. R.; Scotting P.; Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53(2): 121–127; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Krabbe C.; Zimmer J.; Meyer M. Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS 113(11–12): 831–844; 2005.

    Article  PubMed  Google Scholar 

  • Kuznetsov S. A.; Krebsbach P. H.; Satomura K.; Kerr J.; Riminucci M.; Benayahu D.; Robey P. G. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12(9): 1335–1347; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lindner U.; Kramer J.; Rohwedel J.; Schlenke P. Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37(2): 75–83; 2010.

    Article  PubMed  Google Scholar 

  • Lu P.; Blesch A.; Tuszynski M. H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2): 174–191; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Malgieri A.; Kantzari E.; Patrizi M. P.; Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3(4): 248–269; 2010.

    PubMed  Google Scholar 

  • Rosenbaum A. J.; Grande D. A.; Dines J. S. The use of mesenchymal stem cells in tissue engineering: a global assessment. Organogenesis 4(1): 23–27; 2008.

    PubMed  Google Scholar 

  • Sanchez-Ramos J.; Song S.; Cardozo-Pelaez F.; Hazzi C.; Stedeford T.; Willing A.; Freeman T. B.; Saporta S.; Janssen W.; Patel N. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2): 247–256; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J. R. Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69(6): 880–893; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Scintu F.; Reali C.; Pillai R.; Badiali M.; Sanna M. A.; Argiolu F.; Ristaldi M. S.; Sogos V. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments. BMC Neurosci 7: 14; 2006.

    Article  PubMed  Google Scholar 

  • Tuan R. S.; Boland G.; Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1): 32–45; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Undale A. H.; Westendorf J. J.; Yaszemski M. J.; Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 84(10): 893–902; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S.; Saito T.; Caplan A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12): 1417–1426; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D.; Reynolds K.; Black I. B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69(6): 908–917; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D.; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4): 364–370; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. Serdar Bedii Omay for supplying us bone marrow samples for hMSCs isolation. This work was supported by TUBITAK (106S279, SBAG-K-116) and Fatih University Research Project Foundation (P50030706).

Ethical issues

This work was developed under the Ethics Committee of KTU, process number 2007/26.

Authors’ contributions

All authors participated in planning the study and preparing the manuscript; SI designed the study, analyzed data and wrote the manuscript; BM and NK conducted the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevim Isik.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammadov, B., Karakas, N. & Isik, S. Comparison of long-term retinoic acid-based neural induction methods of bone marrow human mesenchymal stem cells. In Vitro Cell.Dev.Biol.-Animal 47, 484–491 (2011). https://doi.org/10.1007/s11626-011-9425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9425-4

Keywords

Navigation