Skip to main content
Log in

Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were “separately” co-cultured with Nc cells without direct cell–cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The “spinal cord-promotion” and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range “Nc suppression” will be determined by future studies. Interestingly, these effects, “Nc suppression” and “SC promotion” were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Borycki A. G.; Brunk B.; Tajbakhsh S.; Buckingham M.; Chiang C.; Emerson Jr. C. P. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126: 4053–4063; 1999.

    PubMed  CAS  Google Scholar 

  • Blagden C. S.; Currie P. D.; Ingham P. W.; Hughes S. M. Notochord induction of zebrafish slow muscle mediated by sonic hedgehog. Genes Dev 11: 2163–2175; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Das B.; Heimeier R. A.; Buchholz D. R.; Shi Y. B. Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J Biol Chem 284: 34167–34178; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ekker S. C.; McGrew L. L.; Lai C. J.; Lee J. J.; von Kessler D. P.; Moon R. T.; Beachy P. A. Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121(8): 2337–47; 1995.

    PubMed  CAS  Google Scholar 

  • Elia D.; Madhala D.; Ardon E.; Reshef R.; Halevy O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1773(9): 1438–46; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson M. K.; Pan H.; Pinney D. F.; Liu Y.; Lewandowski A.; Epstein D. J.; Emerson Jr. C. P. Myf5 is a direct target of long-range shh signaling and gli regulation for muscle specification. Genes Dev 16(1): 114–26; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hebrok M.; Kim S. K.; Melton D. A. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes Dev 12: 1705–1713; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Incardona J. P.; Gaffield W.; Kapur R. P.; Roelink H. The teratogenicveratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125(18): 3553–62; 1998.

    PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A.; Li Q.; Amano T.; Damjanovski S.; Ueda S.; Shi Y. B. Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol 150: 1177–1188; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A.; Ueda S. Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res 286: 467–476; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A.; Ueda S.; Inokuchi T.; Amano T.; Damjanovski S.; Stolow M.; Shi Y. B. Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation 69: 27–37; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K.; Kuroda M.; Nishikawa A. Regulation of desmin expression in adult-type myogenesis and muscle maturation during Xenopus laevis metamorphosis. Zoolog Sci 26(6): 389–97; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kerr J. F.; Harmon B.; Searle J. An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J Cell Sci 14: 571–585; 1974.

    PubMed  CAS  Google Scholar 

  • Martin B. L.; Peyrot S. M.; Harland R. M. Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis. Dev Biol 304(2): 722–34; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mukhi S.; Cai L.; Brown D. D. Gene switching at Xenopus laevis metamorphosis. Dev Biol 338(2): 117–26; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Münsterberg A. E.; Lassar A. B. Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development 121: 651–660; 1995.

    PubMed  Google Scholar 

  • Muntz L. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (daudin 1802). J Embryol Exp Morphol 33(3): 757–74; 1975.

    PubMed  CAS  Google Scholar 

  • Nieuwkoop P. D.; Faber J. Normal table of Xenopus laevis (Daudin). Garland Publishing, New York; 1994.

    Google Scholar 

  • Nishikawa A. Induction of cell differentiation and programmed cell death in amphibian metamorphosis. Hum Cell 10(3): 167–74; 1997.

    PubMed  CAS  Google Scholar 

  • Nishikawa A.; Hayashi H. Isoform transition of contractile proteins related to muscle remodeling with an axial gradient during metamorphosis in Xenopus laevis. Dev Biol 165(1): 86–94; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa A.; Hayashi H. Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis. Differentiation 59(4): 207–14; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ochi H.; Pearson B. J.; Chuang P. T.; Hammerschmidt M.; Westerfield M. Hhip regulates zebrafish muscle development by both sequestering hedgehog and modulating localization of smoothened. Dev Biol 297(1): 127–40; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Placzek M. The role of the notochord and floor plate in inductive interactions. Curr Opin Genet Dev 5(4): 499–506; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber A. M.; Mukhi S.; Brown D. D. Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. Dev Biol 331: 89–98; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Shibota Y.; Kaneko Y.; Kuroda M.; Nishikawa A. Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine. Differentiation 66(4–5): 227–38; 2000.

    PubMed  CAS  Google Scholar 

  • Shimizu-Nishikawa K.; Shibota Y.; Takei A.; Kuroda M.; Nishikawa A. Regulation of specific developmental fates of larval- and adult-type muscles during metamorphosis of the frog Xenopus. Dev Biol 251(1): 91–104; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Stern H. M.; Hauschka S. D. Neural tube and notochord promote in vitro myogenesis in single somite explants. Dev Biol 167: 87–103; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zeng X.; Goetz J. A.; Suber L. M.; Scott Jr. W. J.; Schreiner C. M.; Robbins D. J. A freely diffusible form of sonic hedgehog mediates long-range signaling. Nature 411: 716–720; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Nishikawa.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamane, H., Ihara, S., Kuroda, M. et al. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro. In Vitro Cell.Dev.Biol.-Animal 47, 470–483 (2011). https://doi.org/10.1007/s11626-011-9423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9423-6

Keywords

Navigation