Skip to main content

Advertisement

Log in

Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication, morphology, and function were lost if the cells were cultured without STO feeder cells. A method for the feeder-independent continuous culture of PICM-19 cells (FI-PICM-19) is presented. PICM-19 cells were maintained and grown without feeder cells on collagen I-coated tissue culture plastic for 26 passages (P26) with initial split ratios of 1:3 that diminished to split ratios of less than 1:2 after passage 16. Once plated, the FI-PICM-19 cells were overlaid with a 1:12 to 1:50 dilution of Matrigel or related extracellular matrix product. Growth of the cells was stimulated by daily refeedings with STO feeder-cell conditioned medium. The FI-PICM-19 cells grew to an approximate confluence of 50% prior to each passage at 2-wk intervals. Growth curve analysis showed their average cell number doubling time to be ~96 h. Morphologically, the feeder-independent cells closely resembled PICM-19 cells grown on feeder cells, and biliary canalicui were present at cell-to-cell junctions. However, no spontaneous multicellular ductules formed in the monolayers of FI-PICM-19 cells. Ultrastructural subcellular features of the FI-PICM-19 cells were similar to those of PICM-19 cells cultured on feeder cells. The FI-PICM-19 cells produced a spectrum of serum proteins and expressed many liver/hepatocyte-specific genes. Importantly, cytochrome P450 (EROD) activity, ammonia clearance, and urea production were maintained by the feeder-independent cells. This simple method for the propagation of the PICM-19 cell line without feeder cells should simplify the generation and selection of functional mutants within the population and enhances the cell line’s potential for use in toxicological/pharmacological screening assays and for use in an artificial liver device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Blomberg L. A.; Garrett W. M.; Guillomot M.; Miles J. R.; Sonstegard T. S.; Van Tassell C. P.; Zuelke K. A. Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes. Mol Reprod Dev 73: 1491–1502; 2006.

    Article  CAS  Google Scholar 

  • Blomberg L. A.; Schreier L. L.; Talbot N. C. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol Reprod Dev 75: 450–463; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Brooks F. A.; Gardner R. L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA 94: 5709–5712; 1997.

    Article  Google Scholar 

  • Caperna T. J.; Shannon A. E.; Blomberg L. A.; Garrett W. M.; Ramsay T. G. Identification of protein carbonyls in serum of the fetal and neonatal pig. Comp Biochem Physiol B 156: 189–196; 2010.

    Article  PubMed  Google Scholar 

  • Chamuleau R. A.; Deurholt T.; Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 20: 327–335; 2005.

    Article  PubMed  Google Scholar 

  • Di Nicuolo G.; van de Kerkhove M. P.; Hoekstra R.; Beld M. G.; Amoroso P.; Battisti S.; Starace M.; di Florio E.; Scuderi V.; Scala S.; Bracco A.; Mancini A.; Chamuleau R. A.; Calise F. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2: 286–292; 2005.

    Article  Google Scholar 

  • Demetriou A. A.; Brown R. S.; Busuttil R. W.; Fair J.; McGuire B. M.; Rosenthal P.; Am Esch 2nd J. S.; Lerut J.; Nyberg S. L.; Salizzoni M.; Fagan E. A.; De Hemptinne B.; Broelsch C. E.; Muraca M.; Salmeron J. M.; Rabkin J. M.; Metselaar H. J.; Pratt D.; De La Mata M.; McChesney L. P.; Everson G. T.; Lavin P. T.; Stevens A. C.; Pitkin Z.; Solomon B. A. Prospective, randomized, multicenter, controlled trial of bioartificial liver in treating acute liver failure. Ann Surg 239: 660–670; 2004.

    Article  PubMed  Google Scholar 

  • Donato M. T.; Gómez-Lechón M. J.; Castell J. V. A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Anal Biochem 213: 29–33; 1993.

    Google Scholar 

  • Filippi C.; Keatch S. A.; Rangar D.; Nelson L. J.; Hayes P. C.; Plevris J. N. Improvement of C3A cell metabolism for usage in bioartificial liver support systems. J Hepatol 41: 599–605; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Germain L.; Blouin M. J.; Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 48: 4909–4918; 1988.

    CAS  PubMed  Google Scholar 

  • Hoekstra R.; Chamuleau R. A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 25: 182–191; 2002.

    CAS  PubMed  Google Scholar 

  • Ishii M.; Vroman B.; LaRusso N. F. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 97: 1236–1247; 1989.

    CAS  PubMed  Google Scholar 

  • Kobayashi N.; Okitsu T.; Nakaji S.; Tanaka N. Hybrid bioartificial liver: establishing a reversibly immortalized human hepatocyte line and developing a bioartificial liver for practical use. J Artif Organs 6: 236–244; 2003a.

    Article  Google Scholar 

  • Kobayashi N.; Okitsu T.; Tanaka N. Cell choice for bioartificial livers. Keio J Med 52: 151–157; 2003b.

    CAS  Google Scholar 

  • Mei J.; Sgroi A.; Mai G.; Baertschiger R.; Gonelle-Gispert C.; Serre-Beinier V.; Morel P.; Bühler L. H. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 18: 101–110; 2009.

    Article  PubMed  Google Scholar 

  • Montesano R.; Matsumoto K.; Nakamura T.; Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901–908; 1991a.

    Article  CAS  Google Scholar 

  • Montesano R.; Schaller G.; Orci L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66: 697–711; 1991b.

    Article  CAS  Google Scholar 

  • Nyberg S. L.; Remmel R. P.; Mann H. J.; Peshwa M. V.; Hu W. S.; Cerra F. B. Primary hepatocytes outperform HepG2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 220: 59–67; 1994.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Antona C.; Donato M. T.; Boobis A.; Edwards R. J.; Watts P. S.; Castell J. V.; Gómez-Lechón M. J. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32: 505–520; 2002.

    Article  PubMed  Google Scholar 

  • Schlosser A.; Volkmer-Engert R. Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry. J Mass Spectrom 38: 523–525; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Sen S.; Williams R. New liver support devices in acute liver failure: a critical evaluation. Semin Liver Dis 23: 283–294; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Strain A. J.; Neuberger J. M. A bioartificial liver—state of the art. Science 295: 1005–1009; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Strom S. C.; Bruzzone P.; Cai H.; Ellis E.; Lehmann T.; Mitamura K.; Miki T. Hepatocyte transplantation: clinical experience and potential for future use. Cell Transplant 15(Suppl 1): S105–S110; 2006.

    Article  PubMed  Google Scholar 

  • Sussman N. L.; Kelly J. H. The artificial liver. Sci Am 2: 68–77; 1995.

    Google Scholar 

  • Talbot N. C.; Blomberg L. A.; Mahmood A.; Caperna T. J.; Garrett W. M. Isolation and characterization of porcine visceral endoderm cell lines derived from in vivo 11-d blastocysts. In Vitro Cell Dev Biol Anim 43: 72–86; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Caperna T. J. Selective and organotypic culture of intrahepatic bile duct cells from adult pig liver. In Vitro Cell Dev Biol 34A: 785–798; 1998.

    Article  Google Scholar 

  • Talbot N. C.; Caperna T. J.; Lebow L. T.; Moscioni D.; Pursel V. G.; Rexroad Jr. C. E. Ultrastructure, enzymatic, and transport properties of the PICM-19 bipotent liver cell line. Exp Cell Res 225: 22–34; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Caperna T. J.; Wells K. D. The PICM-19 cell line as an in vitro model of liver bile ductules: effects of cAMP inducers, biopeptides and pH. Cells Tissues Organs 171: 99–116; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Caperna T. J.; Willard R. R.; Meekin J. H.; Garrett W. M. Characterization of two subpopulations of the PICM-19 porcine liver stem cell line: utility for their use in cell-based extracorporeal liver assistance devices. Int J Artif Organs 2010 (in press).

  • Talbot N. C.; Paape M. J. Continuous culture of pig tissue-derived macrophages. Meth Cell Sci 18: 315–327; 1996.

    Article  Google Scholar 

  • Talbot N. C.; Pursel V. G.; Rexroad Jr. C. E.; Caperna T. J.; Powell A. M.; Stone R. T. Colony isolation and secondary culture of fetal porcine hepatocytes on STO feeder cells. In Vitro Cell Dev Biol 30A: 851–858; 1994a.

    Article  CAS  Google Scholar 

  • Talbot N. C.; Rexroad Jr. C. E.; Powell A.; Pursel V. G.; Caperna T. J.; Ogg S. L.; Nel N. D. A continuous culture of pluripotent fetal hepatocytes derived from the 8-d epiblast of the pig. In Vitro Cell Dev Biol 30A: 843–850; 1994b.

    Article  CAS  Google Scholar 

  • Talbot N. C.; Rexroad Jr. C. E.; Pursel V. G.; Powell A. M.; Nel N. D. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev Biol 29A: 543–554; 1993.

    Article  CAS  Google Scholar 

  • Tanaka M. A histochemical study on the activity of gamma-glytamyl transpeptidase in liver disease. Acta Pathol Jpn 24: 651–665; 1974.

    CAS  PubMed  Google Scholar 

  • Wang L.; Sun J.; Li L.; Mears D.; Horvat M.; Sheil A. G. Comparison of porcine hepatocytes with human hepatoma (C3A) cells for use in a bioartificial liver support system. Cell Transplant 7: 459–468; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Willard R. R.; Shappell N. W.; Meekin J. H.; Talbot N. C.; Caperna T. J. Cytochrome P450 expression profile of the PICM-19H pig liver cell line: potential application to rapid liver toxicity assays. In Vitro Cell Dev Biol Anim 46: 11–19; 2010.

    Google Scholar 

  • Yanai M.; Tatsumi N.; Hasunuma N.; Katsu K.; Endo F.; Yokouchi Y. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn 237: 1268–1283; 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Amy Shannon for assistance with enzyme assays, Lori Schreier for assistance with real-time RT-PCR, and Paul Graninger for his diligence with two-dimensional gel protein analysis, cell metabolic assays, and cell enzyme activity assays. Mention of trade names or commercial products in this publication is solely for the purposes of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Talbot.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, N.C., Blomberg, L.A., Garrett, W.M. et al. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell.Dev.Biol.-Animal 46, 746–757 (2010). https://doi.org/10.1007/s11626-010-9336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9336-9

Keywords

Navigation