Skip to main content
Log in

Human embryonic stem cell lines isolation, cultivation, and characterization

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A large number of human embryonic stem cell (hESC) lines have been derived worldwide since the first hESC line establishment in 1998. Despite many common characteristics, most important of which is the pluripotency, hESC lines vary significantly in their transcriptional profiles, genetic, and epigenetic state. These differences may arise both from individual genetics of the cell lines and from variations in their handling such as isolation and cultivation. In order to minimize the latter differences, the standardized protocols of cultivation and inter-laboratory comprehensive studies should be performed. In this report, we summarized our experience of derivation and characterization of hESC lines as well as of adaptation of hESCs to novel cultivation protocols. We have successfully derived five hESC lines and characterized them by previously established criteria, including expression of specific markers and the capacity to differentiate both in vitro and in vivo. Four of these lines, namely hESM01–04, were initially derived using mouse fibroblasts as a feeder and currently are maintained under feeder-free, serum-free conditions using mTeSR1 and Matrigel. The fifth line, hESMK05 was derived in feeder-free, serum-free conditions using mTeSR1 and Matrigel. Cell lines retain their pluripotent status and normal karyotype for more than 70 passages and are available to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adewumi O.; Aflatoonian B.; Ahrlund-Richter L. et al. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotechnol. 25: 803–816; 2007. doi:10.1038/nbt1318.

    Article  CAS  PubMed  Google Scholar 

  • Allegrucci C.; Young L. E. Differences between human embryonic stem cell lines. Hum. Reprod. 13: 103–120; 2007.

    CAS  Google Scholar 

  • Amit M.; Shariki C.; Margulets V.; Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70: 837–845; 2004. doi:10.1095/biolreprod.103.021147.

    Article  CAS  PubMed  Google Scholar 

  • Baker D. E.; Harrison N. J.; Maltby E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25: 207–215; 2007. doi:10.1038/nbt1285.

    Article  CAS  PubMed  Google Scholar 

  • Bielanska M.; Tan S. L.; Ao A. High rate of mixoploidy among human blastocysts cultured in vitro. Fertil. Steril. 78: 1248–1253; 2002. doi:10.1016/S0015-0282(02)04393-5.

    Article  PubMed  Google Scholar 

  • Cowan C. A.; Klimanskaya I.; McMahon J. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350: 1353–1356; 2004. doi:10.1056/NEJMsr040330.

    Article  CAS  PubMed  Google Scholar 

  • Draper J. S.; Smith K.; Gokhale P. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22: 53–54; 2004. doi:10.1038/nbt922.

    Article  CAS  PubMed  Google Scholar 

  • Ellerström C.; Strehl R.; Moya K. et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 10: 2170–2176; 2006. doi:10.1634/stemcells.2006-0130.

    Article  Google Scholar 

  • Gardner D. K.; Lane M.; Schoolcraft W. B. Physiology and culture of the human blastocyst. J. Reprod. Immunol. 55: 85–100; 2002. doi:10.1016/S0165-0378(01)00136-X.

    Article  CAS  PubMed  Google Scholar 

  • Imreh M. P.; Gertow K.; Cedervall J. et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human es cells. J. Cell. Biochem. 99: 508–516; 2006. doi:10.1002/jcb.20897.

    Article  CAS  PubMed  Google Scholar 

  • Inzunza J.; Sahlen S.; Holmberg K. et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod. 10: 461–466; 2004. doi:10.1093/molehr/gah051.

    Article  CAS  PubMed  Google Scholar 

  • Korneev S. A.; Korneeva E. I.; Lagarkova M. A. et al. Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 14: 1232–1239; 2008. doi:10.1261/rna.1084308.

    Article  Google Scholar 

  • Lagarkova M. A.; Volchkov P. Y.; Lyakisheva A. V. et al. Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle 5: 416–420; 2006.

    CAS  PubMed  Google Scholar 

  • Lagarkova M. A.; Volchkov P. Y.; Philonenko E. S. et al. CD 30 is a marker of undifferentiated human embryonic stem cells rather than a biomarker of transformed hESCs. Cell Cycle 7: 3475–3480; 2008a.

    Google Scholar 

  • Lagarkova M. A.; Volchkov P. Y.; Philonenko E. S. et al. Efficient differentiation of hESCs into endothelial cells in vitro is secured by epigenetic changes. Cell Cycle 7: 2929–2935; 2008b.

    CAS  PubMed  Google Scholar 

  • Ludwig T. E.; Levenstein M. E.; Jones J. M. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24: 185–187; 2006. doi:10.1038/nbt1177.

    Article  CAS  PubMed  Google Scholar 

  • Maitra A.; Arking D. E.; Shivapurkar N. et al. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37: 1099–1103; 2005. doi:10.1038/ng1631.

    Article  CAS  PubMed  Google Scholar 

  • Mikkola M.; Olsson C.; Palgi J. et al. Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Dev. Biol. 6: 40–46; 2006. doi:10.1186/1471-213X-6-40.

    Article  PubMed  Google Scholar 

  • Mitalipova M. M.; Rao R. R.; Hoyer D. M. et al. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23: 19–20; 2005. doi:10.1038/nbt0105-19.

    Article  CAS  PubMed  Google Scholar 

  • Prokhorovich M. A.; Lagar'kova M. A.; Shilov A. G. et al. Cultures of hESM human embryonic stem cells: chromosomal aberrations and karyotype stability. Bull. Exp. Biol. Med. 144: 126–129; 2007. doi:10.1007/s10517-007-0271-z.

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff B. E.; Pera M. F.; Fong C. Y. et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18: 399–404; 2000. doi:10.1038/74447.

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov N. B.; Karamisheva T. V.; Astakhova N. M. et al. Zoo-fish with region-specific paints for mink chromosome 5q: delineation of inter- and intrachromosomal rearrangements in human, pig, and fox. Cytogenet. Cell Genet. 90: 268–270; 2000. doi:10.1159/000056786.

    Article  CAS  PubMed  Google Scholar 

  • Skottman H.; Hovatta O. Culture conditions for human embryonic stem cells. Reproduction 132: 691–698; 2006. doi:10.1530/rep. 1.01079.

    Article  CAS  PubMed  Google Scholar 

  • Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S. et al. Embryonic stem cell lines derived from human blastocysts. Science 282; 1998.

Download references

Acknowledgments

This work was supported by Russian Foundation for Basic Research, Russian Academy of Sciences, and LKT Ltd. We thank A. Bogomasova for excellent work regarding karyotype analysis, A. Zhelezova for teratoma experiments, and T. Karamisheva for FISH analysis. We specially thank D. Kuprash for helpful comments during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei L. Kiselev.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagarkova, M.A., Eremeev, A.V., Svetlakov, A.V. et al. Human embryonic stem cell lines isolation, cultivation, and characterization. In Vitro Cell.Dev.Biol.-Animal 46, 284–293 (2010). https://doi.org/10.1007/s11626-010-9282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9282-6

Keywords

Navigation