Skip to main content
Log in

Cytochrome P450 expression profile of the PICM-19H pig liver cell line: potential application to rapid liver toxicity assays

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Liver in vitro models are needed to replace animal models for rapid assessment of drug biotransformation and toxicity. The PICM-19 pig liver stem cell line may fulfill this need since these cells have activities associated with xenobiotic phase I and II metabolism lacking in other liver cell lines. The objective of this study was to characterize phase I and II metabolic functions of a PICM-19 derivative cell line, PICM-19H, compared to the tumor-derived human HepG2 C3A cell line and primary cultures of adult porcine hepatocytes. Following exposure of PICM-19H cells to either 3-methylcholanthrene, rifampicin or phenobarbital, the induced activities of cytochrome P450 (CYP450) isozymes CYP-1A, -2, and-3A were assessed. Relative to adult porcine hepatocytes, PICM-19H cells exhibited 30% and 43%, respectively, of CYP1A and 3A activities, while HepG2 C3A cells exhibited 7% and 0% of those activities. Fluorescent metabolites were extensively conjugated, i.e., 52% and 96% of CYP450-1A and-3A metabolites were released from medium samples following treatment with β-glucuronidase/arylsulfatase. Rifampicin induction of CYP450 isozyme activities was confirmed by conversion of testosterone to 6β-OH-, 2α-OH- and 2β-OH-testosterone, as determined by mass spectrometry. Susceptibility of PICM-19H cells to acetaminophen toxicity was determined; CD50 was calculated to be 14.9 ± 0.9 mM. Toxicity and bioactivation of aflatoxin B1 was determined in 3-methylcholanthrene-treated cultures and untreated controls; CD50 were 1.59 μM and 31 μM, respectively. These results demonstrate the potential use of PICM-19H cells in drug biotransformation and toxicity testing and further support their use in extracorporeal artificial liver device technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Allen J. W.; Khetani S. R.; Bhatia S. N. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84: 110–119; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Bertz R. J.; Granneman G. R. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32: 210–258; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Caperna T. J.; Failla M. L.; Kornegay E. T.; Richards M. P.; Steele N. C. Isolation and culture of parenchymal and nonparenchymal cells from neonatal swine liver. J Anim Sci 61: 1576–1586; 1985.

    CAS  PubMed  Google Scholar 

  • Caperna T. J.; Shannon A. E.; Poch S. M.; Garrett W. M.; Richards M. P. Hormonal regulation of leptin receptor expression in primary cultures of porcine hepatocytes. Domest Anim Endocrinol 29: 582–592; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Dai Y.; Cederbaum A. I. Cytotoxicity of acetaminophen in human cytochrome P4502E1-transfected HepG2 cells. J Pharmacol Exp Ther 273: 1497–1505; 1995.

    CAS  PubMed  Google Scholar 

  • Diaz G. J.; Squires E. J. Phase II in vitro metabolism of 3-methylindole metabolites in porcine liver. Xenobiotica 33: 485–498; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Di Nicuolo G.; van de Kerkhove M. P.; Hoekstra R.; Beld M. G.; Amoroso P.; Battisti S.; Starace M.; di Florio E.; Scuderi V.; Scala S.; Bracco A.; Mancini A.; Chamuleau R. A.; Calise F. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2: 286–292; 2005.

    Article  Google Scholar 

  • Donato M. T.; Castell J. V.; Gómez-Lechón M. J. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 31: 542–549; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Donato M. T.; Gómez-Lechón M. J.; Castell J. V. A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Anal Biochem 213: 29–33; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Donato M. T.; Jiménez N.; Castell J. V.; Gómez-Lechón M. J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab Dispos 32: 699–706; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Fígares I.; Shannon A. E.; Wray-Cahen D.; Caperna T. J. The role of insulin, glucagon, dexamethasone, and leptin in the regulation of ketogenesis and glycogen storage in primary cultures of porcine hepatocytes prepared from 60 kg pigs. Domest Anim Endocrinol 27: 125–140; 2004.

    Article  PubMed  Google Scholar 

  • Gallagher E. P.; Kunze K. L.; Stapleton P. L.; Eaton D. L. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4 by human liver microsomes. Toxicol Appl Pharmacol 141: 595–606; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Lechón M. J.; Donato M. T.; Castell J. V.; Jover R. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5: 443–462; 2004.

    Article  PubMed  Google Scholar 

  • Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect 106: 511–532; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra R.; Chamuleau R. A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 25: 182–191; 2002.

    CAS  PubMed  Google Scholar 

  • Ishiyama M.; Tominaga H.; Shiga M.; Sasamoto K.; Ohkura Y.; Ueno K.; Watanabe M. Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a water-soluble formazan dye. In Vitro Toxicol 8: 187–190; 1995.

    CAS  Google Scholar 

  • Kamdem L. K.; Meineke I.; Gödtel-Armbrust U.; Brockmöller J.; Wojnowski L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem Res Toxicol 19: 577–586; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kelly J. H.; Koussayer T.; He D. E.; Chong M. G.; Shang T. A.; Whisennand H. H.; Sussman N. L. An improved model of acetaminophen-induced fulminant hepatic failure in dogs. Hepatology 15: 329–335; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Michael S. L.; Pumford N. R.; Mayeux P. R.; Niesman M. R.; Hinson J. A. Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30: 186–195; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar L. S.; Marino P. A.; Adams D. O. Quantification of selected intracellular and secreted hydrolases of macrophages. In: Holden H. T.; Bellanti J. A.; Ghaffer A. (eds) Manual of macrophage methodology (Herscowitz HB). Marcel Dekker Inc., New York, pp 229–247; 1981.

    Google Scholar 

  • Nyberg S. L.; Remmel R. P.; Mann H. J.; Peshwa M. V.; Hu W. S.; Cerra F. B. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 220(): 59–67; 1994.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Antona C.; Donato M. T.; Boobis A.; Edwards R. J.; Watts P. S.; Castell J. V.; Gómez-Lechón J. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32: 505–520; 2002.

    Article  PubMed  Google Scholar 

  • Shimada T.; Yamazaki H.; Mimura M.; Inui Y.; Guengerich F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270: 414–423; 1994.

    CAS  PubMed  Google Scholar 

  • Shimizu Y.; Nakatsuru Y.; Ichinose M.; Takahashi Y.; Kume H.; Mimura J.; Fujii-Kuriyama Y.; Ishikawa T. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 97: 779–782; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Caperna T. J. Selective and organotypic culture of intrahepatic bile duct cells from adult pig liver. In Vitro Cell Dev Biol 34A: 785–798; 1998.

    Article  Google Scholar 

  • Talbot N. C.; Caperna T. J.; Lebow L. T.; Moscioni D.; Pursel V. G.; Rexroad Jr. C. E. Ultrastructure, enzymatic, and transport properties of the PICM-19 bipotent liver cell line. Exp Cell Res 225: 22–34; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Caperna T. J.; Wells K. D. The PICM-19 cell line as an in vitro model of liver bile ductules: effects of cAMP inducers, biopeptides and pH. Cells Tissues Organs 171: 99–116; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Talbot N. C.; Paape M. J. Continuous culture of pig tissue-derived macrophages. Methods Cell Sci 18: 315–327; 1996.

    Article  Google Scholar 

  • Talbot N. C.; Pursel V. G.; Rexroad Jr. C. E.; Caperna T. J.; Powell A. M.; Stone R. T. Colony isolation and secondary culture of fetal porcine hepatocytes on STO feeder cells. In Vitro Cell Dev Biol 30A: 851–858; 1994b.

    Article  CAS  Google Scholar 

  • Talbot N. C.; Rexroad Jr. C. E.; Pursel V. G.; Powell A. M.; Nel N. D. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev Biol 29A: 543–554; 1993.

    Article  CAS  Google Scholar 

  • Talbot N. C.; Rexroad Jr. C. E.; Powell A. M.; Pursel V. G.; Caperna T. J.; Ogg S. L.; Nel N. D. A continuous culture of pluripotent fetal hepatocytes derived from the 8-day epiblast of the pig. In Vitro Cell Dev Biol 30A: 843–850; 1994a.

    Article  CAS  Google Scholar 

  • Ulrichova J.; Dvorak Z.; Vicar J.; Lata J.; Smrzova J.; Sedo A.; Simanek V. Cytotoxicity of natural compounds in hepatocyte cell culture models. The case of quaternary benzo[c]phenanthridine alkaloids. Toxicol Lett 125: 125–132; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Vermeir M.; Annaert P.; Mamidi R. N.; Roymans D.; Meuldermans W.; Mannens G. Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 1: 75–90; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Wang K.; Shindoh H.; Inoue T.; Horii I. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci 27: 229–237; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Watanbe N.; Goda R.; Ochiai H.; Yamashita K. Quantitative method for hydroxytestosterone by GC/MS and its application for measurement of P450 enzyme activity. J Mass Spectrom Soc Jpn 45: 367–375; 1997.

    Google Scholar 

  • Wilkening S.; Stahl F.; Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab Dispos 31: 1035–1042; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Yan Z.; Caldwell G. W. Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem 1: 403–425; 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. John McMurtry and Dr. Wes Garrett for reading the manuscript and for offering helpful editorial and scientific comments in its final preparation. We also thank Ms. Amy Shannon for assistance with enzyme assays and Grant Harrington for assistance with LC MS/MS method development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Talbot.

Additional information

Editor: J. Denry Sato

Mention of trade names or commercial products in this publication is solely for the purposes of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture

The study was supported in part by Hepalife Technologies, Inc., 60 State Street, Suite 700, Boston, MA 02109 under USDA Cooperative Research and Development Agreement No. 58-3K95-8-1238.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willard, R.R., Shappell, N.W., Meekin, J.H. et al. Cytochrome P450 expression profile of the PICM-19H pig liver cell line: potential application to rapid liver toxicity assays. In Vitro Cell.Dev.Biol.-Animal 46, 11–19 (2010). https://doi.org/10.1007/s11626-009-9244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9244-z

Keywords

Navigation