Skip to main content
Log in

Control of myocyte remodeling in vitro with engineered substrates

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Tissue microenvironments can regulate cell behavior by imposing physical restrictions on their geometry and size. An example of these phenomena is cardiac morphogenesis, where morphometric changes in the heart are concurrent with changes in the size, shape, and cytoskeleton of ventricular myocytes. In this study, we asked how myocytes adapt their size, shape, and intracellular architecture when spatially confined in vitro. To answer this question, we used microcontact printing to physically constrain neonatal rat ventricular myocytes on fibronectin islands in culture. The myocytes spread and assumed the shape of the islands and reorganized their cytoskeleton in response to the geometric cues in the extracellular matrix. Cytoskeletal architecture is variable, where myocytes cultured on rectangular islands of lower aspect ratios (length to width ratio) were observed to assemble a multiaxial myofibrillar arrangement; myocytes cultured on rectangles of aspect ratios approaching those observed in vivo had a uniaxial orientation of their myofibrils. Using confocal and atomic force microscopy, we made precise measurements of myocyte volume over a range of cell shapes with approximately equal surface areas. When myocytes are cultured on islands of variable shape but the same surface area, their size is conserved despite the changes in cytoskeletal architecture. Our data suggest that the internal cytoskeletal architecture of the cell is dependent on extracellular boundary conditions while overall cell size is not, suggesting a growth control mechanism independent of the cytoskeleton and cell geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bray, M. A.; Sheehy, S. P.; Parker, K. K. Sarcomere alignment is regulated by myocyte shape. Cell Motility Cytoskel. 65(8): 641–651; 2008. doi:10.1002/cm.20290.

    Article  PubMed  Google Scholar 

  • Campbell, S. E.; Gerdes, A. M.; Smith, T. D. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat. Rec. 219(1): 53–59; 1987. doi:10.1002/ar.1092190110.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Geometric control of cell life and death. Science. 276: 1425–1428; 1997. doi:10.1126/science.276.5317.1425.

    Article  PubMed  CAS  Google Scholar 

  • Delbridge, L. M.; Satoh, H.; Yuan, W.; Bassani, J. W.; Qi, M.; Ginsburg, K. S.; Samarel, A. M.; Bers, D. M. Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy. Am. J. Phys-Heart Circ. Phys. 272(5): 2425–2435; 1997.

    Google Scholar 

  • Engler, A. J.; Carag-Krieger, C.; Johnson, C. P.; Raab, M.; Tang, H. Y.; Speicher, D. W.; Sanger, J. W.; Sanger, J. M.; Discher, D. E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121(Pt 22): 3794–3802; 2008. doi:10.1242/jcs.029678.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, A. M. Cardiac myocyte remodeling in hypertrophy and progression to failure. J. Card. Fail. 8: S264–S268; 2002. doi:10.1054/jcaf.2002.129280.

    Article  PubMed  Google Scholar 

  • Gerdes, A. M.; Capasso, J. M. Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J. Mol. Cell Cardiol. 27: 849–856; 1995. doi:10.1016/0022-2828(95)90000-4.

    Article  PubMed  CAS  Google Scholar 

  • Glantz, S. A. Primer of Biostatistics. 5th ed. McGraw Hill, New York2002.

    Google Scholar 

  • Huang, S.; Chen, C. S.; Ingber, D. E. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell. 9: 3179–3193; 1998.

    PubMed  CAS  Google Scholar 

  • Jacot, J. G.; McCulloch, A. D.; Omens, J. H. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95(7): 3479–3487; 2008. doi:10.1529/biophysj.107.124545.

    Article  PubMed  CAS  Google Scholar 

  • Lammerding, J.; Kamm, R. D.; Lee, R. T. Mechanotransduction in cardiac myocytes. Ann. N.Y. Acad. Sci. 1015: 53–70; 2004. doi:10.1196/annals.1302.005.

    Article  PubMed  Google Scholar 

  • LeDuc, P.; Bellin, R. Nanoscale intracellular organization and functional architecture mediating cellular behavior. Ann. Biomed. Eng. 34(1): 102–113. (12); 2006.

    Google Scholar 

  • Lindner, M.; Bohle, T.; Beuckelmann, D. J. Ca2+-handling in heart failure—a review focusing on Ca2+ sparks. Basic Res. Cardiol. 97(Suppl 1): I79–182; 2002a. doi:10.1007/s003950200034.

    PubMed  Google Scholar 

  • Lindner, M.; Brandt, M. C.; Sauer, H.; Hescheler, J.; Bohle, T.; Beuckelmann, D. J. Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium. 31: 175–182; 2002b. doi:10.1054/ceca.2002.0272.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, T.; Tamura, T.; Said, S.; McCune, S. A.; Gerdes, A. M. Maladaptive remodeling of cardiac myocyte shape begins long before failure in hypertension. Hypertension. 32: 753–757; 1998.

    PubMed  CAS  Google Scholar 

  • Parker, K. K.; Brock, A. L.; Brangwynne, C.; Mannix, R. J.; Wang, N.; Ostuni, E.; Geisse, N. A.; Adams, J. C.; Whitesides, G. M.; Ingber, D. E. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16: 1195–1204; 2002. doi:10.1096/fj.02-0038com.

    Article  PubMed  CAS  Google Scholar 

  • Parker, K. K.; Tan, J.; Chen, C. S.; Tung, L. Myofibrillar architecture in engineered cardiac myocytes. Circ. Res. 103: 340–342; 2008. doi:10.1161/CIRCRESAHA.108.182469.

    Article  PubMed  CAS  Google Scholar 

  • Tan, J. L.; Liu, W.; Nelson, C. M.; Raghavan, S.; Chen, C. S. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10: 865–872; 2004. doi:10.1089/1076327041348365.

    Article  PubMed  CAS  Google Scholar 

  • Walters, D. A.; Cleveland, J. P.; Thomson, N. H.; Hansma, P. K.; Wendman, M. A.; Gurley, G.; Elings, V. Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 67: 3583; 1996. doi:10.1063/1.1147177.

    Article  CAS  Google Scholar 

  • Shorofsky, S. R.; Aggarwal, R.; Corretti, M.; Baffa, J. M.; Strum, J. M.; Al-Seikhan, B. A.; Kobayashi, Y. M.; Jones, L. R.; Wier, W. G.; Balke, C. W. Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks. Circ. Res. 84: 424–434; 1999.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to the Harvard Center for Nanoscale Systems for use of their facilities.

Sources of Funding

Harvard Materials Research Science and Engineering Center (MRSEC) sponsored by the National Science Foundation and the National Institutes of Health (1 R01 HL079126-01A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kit Parker.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisse, N.A., Sheehy, S.P. & Parker, K.K. Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell.Dev.Biol.-Animal 45, 343–350 (2009). https://doi.org/10.1007/s11626-009-9182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9182-9

Keywords

Navigation