Skip to main content
Log in

TNFα Causes Thrombin-Dependent Vagal Neuron Apoptosis in Inflammatory Bowel Disease

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

The role of peripheral tumor necrosis factor alpha (TNFα) in inflammatory bowel disease (IBD) is well established, but its central nervous system (CNS) effects are not understood. Thrombin, another mediator of inflammation in IBD, has been implicated in CNS vagal neuron apoptosis in the dorsal motor nucleus of the vagus (DMV). This study evaluates DMV TNFα exposure, characterizes effects of TNFα on DMV neurons, and identifies a relationship between DMV TNFα and thrombin in IBD.

Methods

2,4,6-Trinitrobenzene sulfonic acid was administered via enema to induce colonic inflammation in rats. TNFα in serum, cerebrospinal fluid (CSF), and DMV tissues were determined by ELISA and DMV TNFα expression by quantitative reverse transcription PCR (RT-PCR). TNFα was administered into the fourth intracerebral ventricle (4 V) adjacent to the DMV, with and without blockade of TNF receptor 1 (TNFR1) and the thrombin receptor proteinase-activated receptor 1 (PAR1). Immunofluorescence was used to evaluate microglial activation (Cd11b) and prothrombin presence in DMV sections. Apoptosis was examined using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) and activated caspase-3 immunofluorescence.

Results

IBD is associated with increased TNFα protein in serum, CSF, and DMV tissue; DMV TNFα transcription is also increased. TNFα (4 V) caused a 54 % increase in microglial activation, a 27 % increase in DMV prothrombin protein, and a 31 % increase in vagal neuron apoptosis by TUNEL. There was a 52 % increase in activated caspase-3 immunofluorescence in TNFα-treated animals (p < 0.05). All effects of 4 V TNFα were prevented by TNFR1 blockade. TNFα-induced apoptosis was prevented by PAR1 blockade.

Conclusions

IBD is associated with DMV exposure to TNFα, causing excess DMV prothrombin and vagal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsuda R, Koide T, Tokoro C, Yamamoto T, Godai T, Morohashi T, et al. Quantitive cytokine mRNA expression profiles in the colonic mucosa of patients with steroid naive ulcerative colitis during active and quiescent disease. Inflammatory bowel diseases. 2009;15(3):328-34. Epub 2008/10/24.

    Article  PubMed  Google Scholar 

  2. Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of neuroimmunology. 1993;47(2):169-76. Epub 1993/09/01.

    Article  CAS  PubMed  Google Scholar 

  3. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. Journal of neuroimmunology. 1997;74(1-2):1-8. Epub 1997/04/01.

    Article  CAS  PubMed  Google Scholar 

  4. Costa GN, Vindeirinho J, Cavadas C, Ambrosio AF, Santos PF. Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Molecular and cellular neurosciences. 2012;50(1):113-23. Epub 2012/04/24.

    Article  CAS  PubMed  Google Scholar 

  5. Inukai T, Uchida K, Nakajima H, Yayama T, Kobayashi S, Mwaka ES, et al. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine. 2009;34(26):2848-57. Epub 2009/12/02.

    Article  PubMed  Google Scholar 

  6. Lambertsen KL, Clausen BH, Fenger C, Wulf H, Owens T, Dagnaes-Hansen F, et al. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience. 2007;144(3):934-49. Epub 2006/12/13.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma AK, Schultze AE, Cooper DM, Reams RY, Jordan WH, Snyder PW. Development of a percutaneous cerebrospinal fluid collection technique in F-344 rats and evaluation of cell counts and total protein concentrations. Toxicologic pathology. 2006;34(4):393-5. Epub 2006/07/18.

    Article  PubMed  Google Scholar 

  8. Paxinos GaW, C. The Rat Brain in Stereotaxic Coordinates. 4th ed. Bowen Hills, Australia: Academic Press; 1998.

    Google Scholar 

  9. Hermann GE, Rogers RC. TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: implications for autonomic control. Brain research. 2009;1273:72-82. Epub 2009/04/08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, et al. Small-molecule inhibition of TNF-alpha. Science. 2005;310(5750):1022-5. Epub 2005/11/15.

    Article  CAS  PubMed  Google Scholar 

  11. Kato Y, Kita Y, Hirasawa-Taniyama Y, Nishio M, Mihara K, Ito K, et al. Inhibition of arterial thrombosis by a protease-activated receptor 1 antagonist, FR171113, in the guinea pig. European journal of pharmacology. 2003;473(2-3):163-9. Epub 2003/08/02.

    Article  CAS  PubMed  Google Scholar 

  12. Hermann GE, Van Meter MJ, Rood JC, Rogers RC. Proteinase-activated receptors in the nucleus of the solitary tract: evidence for glial-neural interactions in autonomic control of the stomach. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2009;29(29):9292-300. Epub 2009/07/25.

    Article  CAS  Google Scholar 

  13. Ammori JB, Zhang WZ, Li JY, Chai BX, Mulholland MW. Effects of ghrelin on neuronal survival in cells derived from dorsal motor nucleus of the vagus. Surgery. 2008;144(2):159-67. Epub 2008/07/29.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Komatsu M, Kobayashi D, Saito K, Furuya D, Yagihashi A, Araake H, et al. Tumor necrosis factor-alpha in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clinical chemistry. 2001;47(7):1297-301. Epub 2001/06/28.

    CAS  PubMed  Google Scholar 

  15. Spoettl T, Hausmann M, Klebl F, Dirmeier A, Klump B, Hoffmann J, et al. Serum soluble TNF receptor I and II levels correlate with disease activity in IBD patients. Inflammatory bowel diseases. 2007;13(6):727-32. Epub 2007/01/30.

    Article  PubMed  Google Scholar 

  16. Rojas-Cartagena C, Flores I, Appleyard CB. Role of tumor necrosis factor receptors in an animal model of acute colitis. Cytokine. 2005;32(2):85-93. Epub 2005/10/11.

    Article  CAS  PubMed  Google Scholar 

  17. Freour T, Jarry A, Bach-Ngohou K, Dejoie T, Bou-Hanna C, Denis MG, et al. TACE inhibition amplifies TNF-alpha-mediated colonic epithelial barrier disruption. International journal of molecular medicine. 2009;23(1):41-8. Epub 2008/12/17.

    CAS  PubMed  Google Scholar 

  18. Corredor J, Yan F, Shen CC, Tong W, John SK, Wilson G, et al. Tumor necrosis factor regulates intestinal epithelial cell migration by receptor-dependent mechanisms. American journal of physiology Cell physiology. 2003;284(4):C953-61. Epub 2002/12/06.

    CAS  PubMed  Google Scholar 

  19. Pan W, Kastin AJ. Upregulation of the transport system for TNFalpha at the blood-brain barrier. Archives of physiology and biochemistry. 2001;109(4):350-3. Epub 2002/04/06.

    Article  CAS  PubMed  Google Scholar 

  20. Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY. Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. Journal of medical microbiology. 2001;50(9):812-21. Epub 2001/09/11.

    CAS  PubMed  Google Scholar 

  21. Hsieh YH, McCartney K, Moore TA, Thundyil J, Gelderblom M, Manzanero S, et al. Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock. 2011;36(4):424-30. Epub 2011/06/28.

    Article  CAS  PubMed  Google Scholar 

  22. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(44):17151-6. Epub 2008/10/29.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Emch GS, Hermann GE, Rogers RC. Tumor necrosis factor-alpha inhibits physiologically identified dorsal motor nucleus neurons in vivo. Brain research. 2002;951(2):311-5. Epub 2002/09/25.

    Article  CAS  PubMed  Google Scholar 

  24. Hermann GE, Tovar CA, Rogers RC. TNFalpha-stimulation of cFos-activation of neurons in the solitary nucleus is suppressed by TNFR:Fc adsorbant construct in the dorsal vagal complex. Brain research. 2003;976(1):69-74. Epub 2003/05/24.

    Article  CAS  PubMed  Google Scholar 

  25. Hermann GE, Tovar CA, Rogers RC. LPS-induced suppression of gastric motility relieved by TNFR:Fc construct in dorsal vagal complex. American journal of physiology Gastrointestinal and liver physiology. 2002;283(3):G634-9. Epub 2002/08/16.

    CAS  PubMed  Google Scholar 

  26. Akobeng AK, Zachos M. Tumor necrosis factor-alpha antibody for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2004(1):CD003574. Epub 2004/02/20.

    PubMed  Google Scholar 

  27. Lawson MM, Thomas AG, Akobeng AK. Tumour necrosis factor alpha blocking agents for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2006(3):CD005112. Epub 2006/07/21.

    PubMed  Google Scholar 

  28. Behm BW, Bickston SJ. Tumor necrosis factor-alpha antibody for maintenance of remission in Crohn's disease. Cochrane Database Syst Rev. 2008(1):CD006893. Epub 2008/02/07.

    PubMed  Google Scholar 

  29. Banks WA, Plotkin SR, Kastin AJ. Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation. 1995;2(3):161-5. Epub 1995/05/01.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou QH, Sumbria R, Hui EK, Lu JZ, Boado RJ, Pardridge WM. Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. The Journal of pharmacology and experimental therapeutics. 2011;339(2):618-23. Epub 2011/08/13.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bariol C, Meagher AP, Vickers CR, Byrnes DJ, Edwards PD, Hing M, et al. Early studies on the safety and efficacy of thalidomide for symptomatic inflammatory bowel disease. Journal of gastroenterology and hepatology. 2002;17(2):135-9. Epub 2002/04/23.

    Article  CAS  PubMed  Google Scholar 

  32. Ehrenpreis ED, Kane SV, Cohen LB, Cohen RD, Hanauer SB. Thalidomide therapy for patients with refractory Crohn's disease: an open-label trial. Gastroenterology. 1999;117(6):1271-7. Epub 1999/12/02.

    Article  CAS  PubMed  Google Scholar 

  33. Kane S, Stone LJ, Ehrenpreis E. Thalidomide as "salvage" therapy for patients with delayed hypersensitivity response to infliximab: a case series. Journal of clinical gastroenterology. 2002;35(2):149-50. Epub 2002/08/13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants, RO1DK054032, and DK043225 from the NIH.

Conflict of Interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W Mulholland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritze, D., Zhang, W., Li, JY. et al. TNFα Causes Thrombin-Dependent Vagal Neuron Apoptosis in Inflammatory Bowel Disease. J Gastrointest Surg 18, 1632–1641 (2014). https://doi.org/10.1007/s11605-014-2573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-014-2573-6

Keywords

Navigation