Skip to main content
Log in

Assessment of brain temperatures during different phases of the menstrual cycle using diffusion-weighted imaging thermometry

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate changes in brain temperature according to the menstrual cycle in women using diffusion-weighted imaging (DWI) thermometry and to clarify relationships between brain and body temperatures.

Materials and methods

In 20 healthy female volunteers (21.3–38.8 years), DWI of the brain was performed during the follicular and luteal phases to calculate the brain temperature. During DWI, body temperatures were also measured. Group comparisons of each temperature between the two phases were performed using the paired t test. Correlations between brain and body temperatures were analyzed using Pearson’s correlation coefficient test.

Results

Mean diffusion-based brain temperature was 36.24 °C (follicular) and 36.96 °C (luteal), showing a significant difference (P < 0.0001). Significant differences were also seen for each body temperature between the two phases. Correlation coefficients between diffusion-based brain and each body temperature were r = 0.2441 (P = 0.1291), –0.0332 (0.8387), and –0.0462 (0.7769), respectively.

Conclusions

In women of childbearing age, brain and body temperatures appear significantly higher in the luteal than in the follicular phase. However, brain and body temperatures show no significant correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kelly G. Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev. 2006;11:278–93.

    PubMed  Google Scholar 

  2. Kiyatkin EA. Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci. 2010;15:73–92.

    Article  CAS  Google Scholar 

  3. Fuller CA. Circadian brain and body temperature rhythms in the squirrel monkey. Am J Physiol. 1984;246:242–6.

    Google Scholar 

  4. Schwab S, Spranger M, Aschoff A, Steiner T, Hacke W. Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology. 1997;48:762–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS. Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med. 1998;26:562–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mariak Z, Lebkowski W, Lyson T, Lewko J, Piekarski P. Brain temperature during craniotomy in general anesthesia. Neurol Neurochir Pol. 1999;33:1325–37.

    CAS  PubMed  Google Scholar 

  7. Le Bihan D, Delannoy J, Levin RL. Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology. 1989;171:853–7.

    Article  PubMed  Google Scholar 

  8. Corbett RJ, Purdy PD, Laptook AR, Chaney C, Garcia D. Noninvasive measurement of brain temperature after stroke. Am J Neuroradiol. 1999;20:1851–7.

    CAS  PubMed  Google Scholar 

  9. Kuroda K, Takei N, Mulkern RV, et al. Feasibility of internally referenced brain temperature imaging with a metabolite signal. Magn Reson Med Sci. 2003;2:17–22.

    Article  PubMed  Google Scholar 

  10. Karaszewski B, Wardlaw JM, Marshall I, et al. Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke. Ann Neurol. 2006;60:438–46.

    Article  PubMed  Google Scholar 

  11. Kozak LR, Bango M, Szabo M, Rudas G, Vidnyanszky Z, Nagy Z. Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles. Acta Paediatr. 2010;99:237–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakai K, Yamada K, Sugimoto N. Calculation methods for ventricular diffusion-weighted imaging thermometry: phantom and volunteer studies. NMR Biomed. 2012;25:340–6.

    Article  PubMed  Google Scholar 

  13. Yamada K, Sakai K, Akazawa K, et al. Moyamoya patients exhibit higher brain temperatures than normal controls. NeuroReport. 2010;21:851–5.

    Article  PubMed  Google Scholar 

  14. Tazoe J, Yamada K, Sakai K, Akazawa K, Mineura K. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry. Neuroradiology. 2014;56:809–15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sai A, Shimono T, Sakai K, et al. Diffusion-weighted imaging thermometry in multiple sclerosis. J Magn Reson Imaging. 2014;40:649–54.

    Article  PubMed  Google Scholar 

  16. Sakai K, Yamada K, Mori S, Sugimoto N, Nishimura T. Age-dependent brain temperature decline assessed by diffusion-weighted imaging thermometry. NMR Biomed. 2011;24:1063–7.

    Article  PubMed  Google Scholar 

  17. Tassorelli C, Sandrini G, Cecchini AP, Nappi RE, Sances G, Martignoni E. Changes in nociceptive flexion reflex threshold across the menstrual cycle in healthy women. Psychosom Med. 2002;64:621–6.

    PubMed  Google Scholar 

  18. Kido A, Kataoka M, Koyama T, Yamamoto A, Saga T, Togashi K. Changes in apparent diffusion coefficients in the normal uterus during different phases of the menstrual cycle. Br J Radiol. 2010;83:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cagnacci A, Soldani R, Laughlin GA, Yen S. Modification of circadian body temperature rhythm during the luteal menstrual phase: role of melatonin. J Appl Physiol. 1996;80:25–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mills R. Self-diffusion in normal and heavy water in the range 1–45 degrees. J Phys Chem. 1973;77:685–8.

    Article  CAS  Google Scholar 

  21. Sakai K, Sakamoto R, Okada T, Sugimoto N, Togashi K. DWI based thermometry: the effects of b-values, resolutions, signal-to-noise ratio, and magnet strength. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2291–3.

    PubMed  Google Scholar 

  22. Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis. 2000;31:157–61.

    Article  Google Scholar 

  23. Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000;88:1643–9.

    CAS  PubMed  Google Scholar 

  24. McEwen BS, Pfaff DW. Hormone effects on hypothalamic neurons: analysing gene expression and neuromodulator action. Trends Neurosci. 1985;8:105–10.

    Article  CAS  Google Scholar 

  25. Baker FC, Waner JI, Vieira EF, Taylor SR, Driver HS, Mitchell D. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol. 2001;530:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hwang PYK, Lewis PM, Maller JJ. Use of intracranial and ocular thermography before and after arteriovenous malformation excision. J Biomed Opt. 2014;19:110503.

    Article  PubMed  Google Scholar 

  27. Campbell I. Body temperature and its regulation. Anaesth Intensive Care. 2011;12:240–4.

    Article  Google Scholar 

  28. Sund-Levander M, Forsberg C, Wahren LK. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci. 2002;16:122–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Tsukamoto.

Ethics declarations

Conflict of interest

Yukio Miki received a research grant from JSPS KAKENHI (grant no. 25461842). The other authors have no conflict of interest directly relevant to the content of this article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, T., Shimono, T., Sai, A. et al. Assessment of brain temperatures during different phases of the menstrual cycle using diffusion-weighted imaging thermometry. Jpn J Radiol 34, 277–283 (2016). https://doi.org/10.1007/s11604-016-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-016-0519-5

Keywords

Navigation