Skip to main content

Advertisement

Log in

Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We retrospectively investigated the effect of the motion correction algorithm (MCA) on image quality and interpretability by heart rate (HR) in coronary CT angiography (CCTA).

Materials and methods

For 105 patients (6 HR groups) undergoing CCTA, 2 readers independently graded the image quality of the 4 major coronary arteries reconstructed with and without MCA at diastole with HR ≤64 bpm and at systole and diastole ≥65 bpm using a 5-point scale. For each HR group and cardiac phase, we compared per-vessel and per-segment image quality using Wilcoxon signed rank test and percentages of interpretable image quality (scores 3–5) among without MCA at diastole with HR ≤64 bpm, as a reference, with MCA at diastole ≤69 bpm and at systole 70–79 bpm using the chi-square test.

Results

The motion correction algorithm reconstruction provided similar or better image quality and interpretability in all groups, with 96–100 % per-vessel (P = 0.008 for the right coronary artery; otherwise, P > 0.05) and 99 % per-segment interpretable image quality (P = 0.0002) at diastole with HR ≤69 bpm and at systole 70–79 bpm compared to the reference (88–100 and 97 %, respectively).

Conclusion

MCA reconstruction preserved image quality and interpretability of CCTA with HR ≤79 bpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. American Heart Association Committee on Cardiovascular Imaging and Intervention; American Heart Association Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Assessment of coronary artery disease by cardiac computed tomography; a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114:1761–91.

    Article  PubMed  Google Scholar 

  2. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  CAS  PubMed  Google Scholar 

  3. Leshka S, Wildermuth S, Boehm T, Desbiolles L, Husmann L, Plass A, et al. Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology. 2006;241:378–85.

    Article  Google Scholar 

  4. Herzog C, Arning-Erb M, Zangos S, Eichler K, Hammerstingl R, Dogan S, et al. Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology. 2006;238:75–86.

    Article  PubMed  Google Scholar 

  5. Hoffmann MH, Shi H, Manzke R, Schmid FT, De Vries L, Grass M, et al. Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology. 2005;234:86–97.

    Article  PubMed  Google Scholar 

  6. Leipsic J, Labounty TM, Hague CJ, Mancini GB, O’Brien JM, Wood DA, et al. Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr. 2012;6:164–71.

    Article  PubMed  Google Scholar 

  7. Baumüller S, Leschka S, Desbiolles L, Stolzmann P, Scheffel H, Seifert B, et al. Dual-source versus 64-section CT coronary angiography at low heart rates: comparison of accuracy and radiation dose. Radiology. 2009;253:56–64.

    Article  PubMed  Google Scholar 

  8. Wintersperger BJ, Nikolaou K, von Ziegler F, Johnson T, Rist C, Leber A, et al. Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol. 2006;41:436–42.

    Article  PubMed  Google Scholar 

  9. Shapiro MD, Pena AJ, Nichols JH, Worrell S, Bamberg F, Dannemann N, et al. Efficacy of pre-scan beta-blockade and impact of heart rate on imaging quality in patients undergoing coronary multidetector computed tomography angiography. Eur J Radiol. 2008;66:37–41.

    Article  PubMed  Google Scholar 

  10. Pannu HK, Alvarez W Jr, Fishman EK. Beta-blockers for cardiac CT: a primer for the radiologist. Am J Roentgenol. 2006;186:S341–5.

    Article  Google Scholar 

  11. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–23.

    Article  CAS  PubMed  Google Scholar 

  12. Earls JP, Berman EL, Urban BA, Curry CA, Lane JL, Jennings RS, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology. 2008;246:742–53.

    Article  PubMed  Google Scholar 

  13. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248:431–7.

    Article  PubMed  Google Scholar 

  14. Hirai N, Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Matsuura N, et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology. 2008;248:424–30.

    Article  PubMed  Google Scholar 

  15. Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T. Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol. 2008;52:1450–5.

    Article  PubMed  Google Scholar 

  16. Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29:191–7.

    Article  PubMed  Google Scholar 

  17. Buechel RR, Husmann L, Herzog BA, Pazhenkottil AP, Nkoulou R, Ghadri JR, et al. Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering: feasibility in a large population. J Am Coll Cardiol. 2011;57:332–6.

    Article  PubMed  Google Scholar 

  18. Pontone G, Andreini D, Bartorelli AL, Cortinovis S, Mushtaq S, Bertella E, Annoni A, et al. Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol. 2009;54:346–55.

    Article  PubMed  Google Scholar 

  19. Muenzel D, Noel PB, Dorn F, Dobritz M, Rummeny EJ, Huber A. Step and shoot coronary CT angiography using 256-slice CT: effect of heart rate and heart rate variability on image quality. Eur Radiol. 2011;21:2277–84.

    Article  CAS  PubMed  Google Scholar 

  20. Earls JP. How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr. 2009;3:45–51.

    Article  PubMed  Google Scholar 

  21. Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. Am J Roentgenol. 2010;195:655–60.

    Article  Google Scholar 

  22. Okerlund D, Pack J, Jackson J. SnapShot Freeze motion correction in coronary CT angiography. A GE Healthcare white paper. Dec. 2011.

  23. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51(4 Suppl):5–40.

    Article  CAS  PubMed  Google Scholar 

  24. Shim SS, Kim Y, Lim SM. Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. Am J Roentgenol. 2005;184:649–54.

    Article  Google Scholar 

  25. Li Q, Li P, Su Z, Yao X, Wang Y, Wang C, et al. Effect of a novel motion correction algorithm (SSF) on the image quality of coronary CTA with intermediate heart rates: segment-based and vessel-based analyses. Eur J Radiol. 2014;83:2024–32.

    Article  PubMed  Google Scholar 

  26. Husmann L, Leschka S, Desbiolles L, Schepis T, Gaemperli O, Seifert B, et al. Coronary artery motion and cardiac phases: dependency on heart rate–—implications for CT image reconstruction. Radiology. 2007;245:567–76.

    Article  PubMed  Google Scholar 

  27. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000;216:457–63.

    Article  CAS  PubMed  Google Scholar 

  28. Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, et al. Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. Am J Roentgenol. 2010;194:933–7.

    Article  Google Scholar 

  29. Wang YT, Yang CY, Hsiao JK, Liu HM, Lee WJ, Shen Y. The influence of reconstruction algorithm and heart rate on coronary artery image quality and stenosis detection at 64-detector cardiac CT. Korean J Radiol. 2009;10:227–34.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Leschka S, Scheffel H, Husmann L, Gämperli O, Marincek B, Kaufmann PA, et al. Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. Am J Roentgenol. 2008;190:1583–90.

    Article  Google Scholar 

  31. Brodoefel H, Burgstahler C, Tsiflikas I, Reimann A, Schroeder S, Claussen CD, et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008;247:346–55.

    Article  PubMed  Google Scholar 

  32. Dewey M, Vavere AL, Arbab-Zadeh A, Miller JM, Sara L, Cox C, et al. Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenosis: CORE-64 Multicenter International Trial. Am J Roentgenol. 2010;194:93–102.

    Article  Google Scholar 

Download references

Conflict of interest

Yun Shen is an employee of GE Healthcare. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Machida.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machida, H., Lin, XZ., Fukui, R. et al. Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate. Jpn J Radiol 33, 84–93 (2015). https://doi.org/10.1007/s11604-014-0382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-014-0382-1

Keywords

Navigation