Skip to main content
Log in

miR-200c inhibits metastasis of breast cancer cells by targeting HMGB1

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

miR-200c has been shown to regulate the epithelial-mesenchymal transition (EMT) by inhibiting ZEB1 and ZEB2 expression in breast cancer cells. This study further examined the role of miR-200c in the invasion and metastasis of breast cancer that goes beyond the regulation on ZEB1 and ZEB2 expression. In this study, the bioinformatics software (miRanda) was used to predict the target gene of miR-200c and Renilla luciferase assay to verify the result. The metastatic breast cancer cells MDA-MB-231 were cultured and transfected with the miR-200c mimic or inhibitor. The expressions of miR-200c and HMGB1 were detected by RT-PCR and Western blotting, respectively. Transwell assay and wound healing assay were employed to examine the invasive and migrating ability of transfected cells. Target prediction and Renilla luciferase analysis revealed that HMGB1 was a putative target gene of miR-200c. After transfection of MDA-MB-231 cells with the miR-200c mimic or inhibitor, the expression of miR-200c was significantly increased or decreased when compared with cells transfected with the miR-200c mimic NC or inhibitor NC. Moreover, the expression of HMGB1 was reversely correlated with that of miR-200c in transfected cells. Tranwell assay showed that the number of invasive cells was significantly reduced in miR-200c mimic group when compared with miR-200c inhibitor group. It was also found that the migrating ability of cells transfected with miR-200c mimics was much lower than that of cells transfected with miR-200c inhibitors. It was suggested that miR-200c can suppress the invasion and migration of breast cancer cells by regulating the expression of HMGB1. miR-200c and HMGB1 may become useful biomarkers for progression of breast cancer and targets of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin, 2013,63(1):11–30

    Article  PubMed  Google Scholar 

  2. Jiang P, Enomoto A, Takahashi M. Cell biology of the movement of breast cancer cells: intracellular signaling and the actin cytoskeleton. Cancer Lett, 2009,284(2):122–130

    Article  PubMed  CAS  Google Scholar 

  3. Graves P, Zeng Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics, 2012,10(5):239–245

    Article  PubMed  CAS  Google Scholar 

  4. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics, 2010,11(7):537–561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008,9(6):582–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 2009,8(6):843–852

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009,138(3):592–603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Schickel R, Park SM, Murmann AE, et al. mir-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell, 2010,38(6):908–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 2011,13(3):317–323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Cochrane DR, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther, 2009,8(5):1055–1066

    Article  PubMed  CAS  Google Scholar 

  11. Lin J, Liu C, Gao F, et al. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem, 2013,114(3):606–615

    Article  PubMed  CAS  Google Scholar 

  12. Ahmad A, Aboukameel A, Kong D, et al. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res, 2011,71(9):3400–3409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Howe EN, Cochrane DR, Cittelly DM, et al. miR-200c targets a NF-κB up-regulated TrkB/NTF3 autocrine signaling loop to enhance anoikis sensitivity in triple negative breast cancer. PLoS One, 2012,7(11):e49987

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Jurmeister S, Baumann M, Balwierz A, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol, 2012,32(3):633–651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Chen Y, Sun Y, Chen L, et al. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep, 2013,7(5):1579–1584

    PubMed  CAS  Google Scholar 

  16. Nikoletopoulou V, Markaki M, Palikaras K, et al. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 2013,1833(12):3448–3459

    Article  PubMed  CAS  Google Scholar 

  17. Ko YB, Kim BR, Nam SL, et al. High-mobility group box 1 (HMGB1) protein regulates tumor-associated cell migration through the interaction with BTB domain. Cell Signal, 2014,26(4):777–783

    Article  PubMed  CAS  Google Scholar 

  18. Tang D, Kang R, Zeh HJ 3rd, et al. High-mobility group box 1 and cancer. BBA, 2010,1799(1–2):131–140

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Sparatore B, Patrone M, Passalacqua M, et al. Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli. Biochem J, 2005,389(1):215–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Brezniceanu ML, Völp K, Bösser S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J, 2003,17(10):1295–1297

    PubMed  CAS  Google Scholar 

  21. Livesey KM, Kang R, Vernon P, et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res, 2012,72(8):1996–2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, et al. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene, 2013,32(3):363–374

    Article  PubMed  CAS  Google Scholar 

  23. Jiao Y, Wang HC, Fan SJ. Growth suppression and radiosensitivity increase by HMGBI in breast cancer. Acta pharmacologica Sinica, 2007,28(12):1957–1967

    Article  PubMed  CAS  Google Scholar 

  24. Bernardini M, Lee CH, Beheshti B, et a1. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia, 2005,7(6):603–613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Barnes KR, Kutikov A, Lippard SJ. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum (IV) complexes. Chem Biol, 2004,11(4):557–564

    Article  PubMed  CAS  Google Scholar 

  26. Gregory PA, Bracken CP, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell, 2011,22(10):1686–1698

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Tobar N, Villar V, Santibanez JF. ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem, 2010,340(1–2):195–202

    Article  PubMed  CAS  Google Scholar 

  28. Chua HL, Bhat-Nakshatri P, Clare SE. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 2007,26(5):711–724

    Article  PubMed  CAS  Google Scholar 

  29. Wu X, Mi Y, Yang H, et al. The activation of HMGB 1 as a progression factor on inflammation response in normal human bronchial epithelial cells through RAGE/JNK/NF-κB pathway, Mol Cell Biochem, 2013,380(1–2):249–257

    Article  PubMed  CAS  Google Scholar 

  30. Smolarczyk R, Cichoń T, Jarosz M, et al. HMGB1—its role in tumor progression and anticancer therapy. Postepy Hig Med Dosw, 2012,22(66):913–920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-ying Yu  (于世英).

Additional information

The project was supported by the Innovation Foundation of Excellent Intellectuals in Henan Province (No. 2109901).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Bp., Wang, Ds., Xing, Jw. et al. miR-200c inhibits metastasis of breast cancer cells by targeting HMGB1. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 201–206 (2014). https://doi.org/10.1007/s11596-014-1259-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1259-3

Key words

Navigation