Date: 01 Aug 2013

Role of GSK-3β in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This study investigated the role of glycogen synthase kinase-3β (GSK-3β) in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats. The hippocampi were dissected from aged rats which had been intraperitoneally administered lithium chloride (LiCl, 100 mg/kg) and then exposed to 1.4% isoflurane for 6 h. The expression of GSK-3β was detected by Western blotting. The mRNA and protein expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Morris water maze was employed to detect spatial memory ability of rats. The results revealed that the level of GSK-3β was upregulated after isofurane exposure. Real-time PCR analysis demonstrated that isoflurane anesthesia increased mRNA levels of TNF-α, IL-1β and IL-6, which was consistent with the ELISA results. However, these changes were reversed by prophylactic LiCl, a non-selective inhibitor of GSK-3β. Additionally, we discovered that LiCl alleviated isoflurane-induced cognitive impairment in aged rats. Furthermore, the role of GSK-3β in isoflurae-induced neuroinflammation and cognitive dysfunction was associated with acetylation of NF-κB p65 (Lys310). In conclusion, these results suggested that GSK-3β is associated with isoflurane-induced upregulation of proinflammatory cytokines and cognitive disorder in aged rats.

This work was supported by grants from the National Natural Science Foundation of China (No. 81271233, No. 81200880, No. 31240030).