Skip to main content
Log in

Summary

The molecular pathogenesis of leukemia is poorly understood. Earlier studies have shown both Wilms’ tumor 1 suppressor gene (WT1) and CML28 abnormally expressed in malignant diseases of the hematopoietic system and WT1 played an important role in leukemogenesis. However, the relationship between molecular CML28 and WT1 has not been reported. Here we described the use of small interfering RNA (siRNA) against WT1 and CML28 in leukemic cell line K562 to examine the interaction between CML28 and WT1. WT1 and CML28 gene expression in transfected K562 cells was detected by using RQ-PCR and Western blotting. K562 cells transfected with WT1-siRNA could greatly decrease both mRNA and protein expression levels of WT1 and CML28. In contrast, CML28-siRNA did not exert effect on WT1. Further, subcellular co-localization assay showed that the two proteins could co-localize in the cytoplasm of K562 cells, but WT1/CML28 complexes were not detected by using immunoprecipitation. It was suggested that there exists the relationship between CML28 and WT1. CML28 may be a downstream target molecule of WT1 and regulated by WT1, which will provide important clues for further study on the role of CML28 and WT1 in leukemic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckler AJ, Pelletier J, Haber DA, et al. Isolation, characterization, and expression of the murine Wilms’ tumor gene (WT1) during kidney development. Mol Cell Biol, 1991,11(3):1707–1712

    PubMed  CAS  Google Scholar 

  2. Rauscher FJ 3rd, Morris JF, Tournay OE, et al. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science, 1990,250(4985): 1259–1262

    Article  PubMed  CAS  Google Scholar 

  3. Dey BR, Sukhatme VP, Roberts AB, et al. Repression of the transforming growth factor-beta 1 gene by the Wilms’ tumor suppressor WT1 gene product. Mol Endocrinol, 1994,8(5):595–602

    Article  PubMed  CAS  Google Scholar 

  4. Loeb DM. WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle, 2006,5(12):1249–1253

    Article  PubMed  CAS  Google Scholar 

  5. Oh S, Song Y, Yim J, et al. The Wilms’ tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem, 1999,274(52):37 473–37 478

    Article  CAS  Google Scholar 

  6. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia, 2002,16(10):2115–2121

    Article  PubMed  CAS  Google Scholar 

  7. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood, 1994,84(9):3071–3079

    PubMed  CAS  Google Scholar 

  8. Brieger J, Weidmann E, Maurer U, et al. The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR. Ann Oncol, 1995,6(8):811–816

    PubMed  CAS  Google Scholar 

  9. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood, 1997,90(3):1217–1225

    PubMed  CAS  Google Scholar 

  10. Barragan E, Cervera J, Bolufer P, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica, 2004,89(8):926–933

    PubMed  CAS  Google Scholar 

  11. Chiusa L, Francia di Celle P, Campisi P, et al. Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia. Haematologica, 2006,91(2):270–271

    PubMed  CAS  Google Scholar 

  12. Huff V, Saunders GF. Wilms tumor genes. Biochim Biophys Acta, 1993,1155(3):295–306

    PubMed  CAS  Google Scholar 

  13. Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell, 1990,60(3): 509–520

    Article  PubMed  CAS  Google Scholar 

  14. Yamagami T, Sugiyama H, Inoue K, et al. Growth inhibition of human leukemic cells by WT1 (Wilms’ tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood, 1996,87(7):2878–2884

    PubMed  CAS  Google Scholar 

  15. Yang XF, Wu CJ, Chen L, et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res, 2002,62(19):5517–5522

    PubMed  CAS  Google Scholar 

  16. Guo X, Ma J, Sun J, et al. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA, 2007,104(1): 151–156

    Article  PubMed  CAS  Google Scholar 

  17. Yang XF, Wu CJ, McLaughlin S, et al. CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA, 2001,98(13): 7492–7497

    Article  PubMed  CAS  Google Scholar 

  18. Wu CJ, Biernacki M, Kutok JL, et al. Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res, 2005,11(12):4504–4511

    Article  PubMed  CAS  Google Scholar 

  19. Zhou H, Zhang D, Wang Y, et al. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun, 2006,347(1):200–207

    Article  PubMed  CAS  Google Scholar 

  20. Zhang DH, Zhou HS, Wang YY, et al. Construction and expression of dendritic cell nucleic acid vaccine containing CML28 gene in human dendritic cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi (Chinese), 2005,13(4):631–636

    CAS  Google Scholar 

  21. Zhang DH, Dai M, Zhou HS, et al. Monitoring CML28 mRNA levels in patients before and after HSCT by real-time quantitative RT-PCR. Zhongguo Shi Yan Xue Ye Xue Za Zhi (Chinese), 2005,13(5):843–847

    CAS  Google Scholar 

  22. Bai XL, Mao X, Zhang B, et al. The role of CML28 in regulation of proliferation and apoptosis of K562 cell. Med J Chin PAPF, 2012,23(8):678–681

    CAS  Google Scholar 

  23. Jacobsohn DA, Tse WT, Chaleff S, et al. High WT1 gene expression before haematopoietic stem cell transplant in children with acute myeloid leukaemia predicts poor event-free survival. Br J Haematol, 2009,146(6):669–674

    Article  PubMed  CAS  Google Scholar 

  24. Glienke W, Maute L, Koehl U, et al. Effective treatment of leukemic cell lines with wt1 siRNA. Leukemia, 2007,21(10):2164–2170

    Article  PubMed  CAS  Google Scholar 

  25. Gao F, Maiti S, Alam N, et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA, 2006,103(32):11 987–11 992

    Article  CAS  Google Scholar 

  26. Martínez-Estrada OM, Lettice LA, Essafi A, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nature Genet, 2010,42(1):89–93

    Article  PubMed  Google Scholar 

  27. Chen J, Santillan DA, Koonce M, et al. Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res, 2008,68(15): 6199–6207

    Article  PubMed  CAS  Google Scholar 

  28. Rokudai S, Aikawa Y, Tagata Y, et al. Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem, 2009,284(1):237–244

    Article  PubMed  CAS  Google Scholar 

  29. Morrison AA, Viney RL, Ladomery MR. The post-trans-criptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta, 2008,1785(1): 55–62

    PubMed  CAS  Google Scholar 

  30. Bevilacqua A, Ceriani MC, Capaccioli S, et al. Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol, 2003, 195(3):356–372

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-hua Zhang  (张东华).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Zhang, B., Liu, Ll. et al. Interaction of Human Genes WT1 and CML28 in Leukemic Cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 37–42 (2013). https://doi.org/10.1007/s11596-013-1068-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1068-0

Key words

Navigation