Skip to main content
Log in

Establishment of reproducible xenotransplantation model of T cell acute lymphoblastic leukemia in NOD/SCID mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia. However the poor prognosis and low morbidity restrict further analysis of the disease. Therefore there is an increasing demand to develop animal models for identifying novel therapeutic approaches. In this study, we inoculated the anti-mouse CD122 monoclonal antibody conditioned NOD/SCID mice with the leukemia cells from 9 T-ALL patients and 1 cell line via the tail vein. Four of the 9 patients and the cell line were successfully engrafted. Flow cytometry detected high percentage of human CD45+ cells in recipient mice. Immunohistochemistry showed infiltration of human CD45+ cells in different organs. Serial transplantation was also achieved. In vivo drug treatment showed that dexamethasone could extend survival, which was consistent with clinical observation. These results demonstrated that we successfully established 5 xenotransplantation models of T-ALL in anti-mCD122 mAb conditioned NOD/SCID mice, which recapitulated the characteristics of original disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med, 2004,10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  2. Boucheix C, David B, Sebban C, et al. Immunophenotype of adult acute lymphoblastic leukemia, clinical parameters, and outcome: an analysis of a prospective trial including 562 tested patients (LALA87). French Group on Therapy for Adult Acute Lymphoblastic Leukemia. Blood, 1994,84(5):1603–1612

    CAS  Google Scholar 

  3. Annino L, Vegna ML, Camera A, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood, 2002,99(3):863–871

    Article  PubMed  CAS  Google Scholar 

  4. Lapidot T, Fajerman Y, Kollet O. Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. J Mol Med (Berl), 1997,75(9):664–673

    Article  CAS  Google Scholar 

  5. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol, 2007,7(2):118–130

    Article  PubMed  CAS  Google Scholar 

  6. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol, 1991,9:323–350

    Article  PubMed  CAS  Google Scholar 

  7. Cesano A, Hoxie JA, Lange B, et al. The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene, 1992,7(5):827–836

    PubMed  CAS  Google Scholar 

  8. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol, 1995,154(1):180–191

    PubMed  CAS  Google Scholar 

  9. Wang JC, Lapidot T, Cashman JD, et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood, 1998,91(7): 2406–2414

    PubMed  CAS  Google Scholar 

  10. Cox CV, Evely RS, Oakhill A, et al. Characterization of acute lymphoblastic leukemia progenitor cells. Blood, 2004,104(9):2919–2925

    Article  PubMed  CAS  Google Scholar 

  11. Lavau C, Luo RT, Du C, et al. Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid pro genitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA, 2000,97(20):10984–10989

    Article  PubMed  CAS  Google Scholar 

  12. de Guzman CG, Warren AJ, Zhang Z, et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol, 2002,22(15):5506–5517

    Article  PubMed  Google Scholar 

  13. Li S, Ilaria RL Jr, Million RP, et al. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med, 1999,189(9):1399–1412

    Article  PubMed  CAS  Google Scholar 

  14. Dobson CL, Warren AJ, Pannell R, et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J, 1999,18(13):3564–3574

    Article  PubMed  CAS  Google Scholar 

  15. Yu Y, Bradley A. Engineering chromosomal rearrangements in mice. Nat Rev Genet, 2001,2(10):780–790

    Article  PubMed  CAS  Google Scholar 

  16. Heisterkamp N, Jenster G, Kioussis D, et al. Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res, 1991,1(1):45–53

    Article  PubMed  CAS  Google Scholar 

  17. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet, 1997,15(3):303–306

    Article  PubMed  CAS  Google Scholar 

  18. Aplan PD, Jones CA, Chervinsky DS, et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J, 1997,16(9):2408–2419

    Article  PubMed  CAS  Google Scholar 

  19. Ailles LE, Gerhard B, Kawagoe H, et al. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood, 1999,94(5):1761–1772

    PubMed  CAS  Google Scholar 

  20. Lumkul R, Gorin NC, Malehorn MT, et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia, 2002,16(9):1818–1826

    Article  PubMed  CAS  Google Scholar 

  21. Plasilova M, Zivny J, Jelinek J, et al. TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia, 2002,16(1):67–73

    Article  PubMed  CAS  Google Scholar 

  22. Shultz LD, Lang PA, Christianson SW, et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol, 2000,164(5):2496–2507

    PubMed  CAS  Google Scholar 

  23. Tanaka T, Tsudo M, Karasuyama H, et al. A novel monoclonal antibody against murine IL-2 receptor beta-chain. Characterization of receptor expression in normal lymphoid cells and EL-4 cells. J Immunol, 1991,147(7): 2222–2228

    PubMed  CAS  Google Scholar 

  24. Ehl S, Nuesch R, Tanaka T, et al. A comparison of efficacy and specificity of three NK depleting antibodies. J Immunol Methods, 1996,199(2):149–153

    Article  PubMed  CAS  Google Scholar 

  25. Shultz LD, Banuelos SJ, Leif J, et al. Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells. Exp Hematol, 2003,31(6):551–558

    Article  PubMed  Google Scholar 

  26. McKenzie JL, Gan OI, Doedens M, et al. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood, 2005,106(4): 1259–1261

    Article  PubMed  CAS  Google Scholar 

  27. Lewis ID, McDiarmid LA, Samels LM, et al. Establishment of a reproducible model of chronic-phase chronic myeloid leukemia in NOD/SCID mice using blood-derived mononuclear or CD34+ cells. Blood, 1998,91(2): 630–640

    PubMed  CAS  Google Scholar 

  28. Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood, 2006,107(3):1166–1173

    Article  PubMed  CAS  Google Scholar 

  29. Bonnet D, Bhatia M, Wang JC, et al. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant, 1999,23(3):203–209

    Article  PubMed  CAS  Google Scholar 

  30. Rombouts WJ, Martens AC, Ploemacher RE. Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia, 2000,14(5):889–897

    Article  PubMed  CAS  Google Scholar 

  31. Nitsche A, Junghahn I, Thulke S, et al. Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells, 2003,21(2):236–244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported in part by the National Natural Science Foundation of China (No. 81025011 and No. 81090414).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Wang, N., Zhang, Y. et al. Establishment of reproducible xenotransplantation model of T cell acute lymphoblastic leukemia in NOD/SCID mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 511–516 (2012). https://doi.org/10.1007/s11596-012-0088-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-0088-5

Key words

Navigation