Skip to main content
Log in

Analysis of microstructure and mechanical properties of ultrafine grained low carbon steel

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A novel design scheme of hot stamping, quenching and partitioning process was conducted in a quenchable boron steel to obtain the nanometric duplex microstructure comprising ultrafine retained austenite and martensite. It is shown that the materials possess excellent mechanical properties and the ductility can be further improved without compromising the strength. The newly treated steel shows excellent mechanical properties and the total elongation of the steel increases from 6.6% to 14.8% compared with that of hot stamped and quenched steel. Therefore, this kind of steel has become another group of advanced high-strength steels. The microstructure which is mainly responsible for such excellent mechanical properties was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speer J G, De Moor E, Findley K O, et al. Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel[J]. Metall. Mater. Trans. A, 2011, 42(12): 3591–3601

    Article  Google Scholar 

  2. Bhadeshia H. Computational Design of Advanced Steels[J]. Scripta Mater., 2014, 70: 12–17

    Article  Google Scholar 

  3. Naderi M, Abbasi M, Saeed-Akbari A. Enhanced Mechanical Properties of a Hot-stamped Advanced High-Strength Steel via Tempering Treatment[J]. Metall. Mater. Trans. A, 2013, 44(4): 1852–1861

    Article  Google Scholar 

  4. Liu H, Lu X, Jin X, et al. Enhanced Mechanical Properties of a Hot Stamped Advanced High-Strength Steel Treated by Quenching and Partitioning Process[J]. Scripta Mater., 2011, 64(8): 749–752

    Article  Google Scholar 

  5. Nikravesh M, Naderi M, Akbari G H. Influence of Hot Plastic Deformation and Cooling Rate on Martensite and Bainite Start Temperatures in 22MnB5 Steel[J]. Mater. Sci. Eng., A, 2012, 540: 24–29

    Article  Google Scholar 

  6. Kolleck R, Steinhoefer D, Feindt J A, et al. Manufacturing Method for Safety and Structural Body Parts for Lightweight Body Design[C]. Proceedings IDDRG, Sindelfingen, 2004

    Google Scholar 

  7. Liu H S, Xing Z W, Bao J, et al. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation[J]. J. Mater. Eng. Perform., 2010, 19(3): 325–334

    Article  Google Scholar 

  8. Kolleck R, Veit R, Merklein M, et al. Investigation on Induction Heating for Hot Stamping of Boron Alloyed Steels[J]. CIRP Annals-Manuf. Technol., 2009, 58(1): 275–278

    Article  Google Scholar 

  9. Merklein M, Lechler J, Geiger M. Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5[J]. CIRP Annals-Manuf. Technol., 2006, 55(1): 229–232

    Article  Google Scholar 

  10. Heping Liu, Liu B, Li D, et al. Hot Deformation Behavior of Low Carbon Steel during Compression at Elevated Temperature[J]. J.Wuhan Univ.Technol.-Mater. Sci. Ed., 2014, 29(3): 601–605

    Article  Google Scholar 

  11. Hoffmann H, So H, Steinbeiss H. Design of Hot Stamping Tools with Cooling System[J]. CIRP Annals-Manuf. Technol., 2007, 56(1): 269–272

    Article  Google Scholar 

  12. Bardelcik A, Salisbury C P, Winkler S, et al. Effect of Cooling Rate on the High Strain Rate Properties of Boron Steel[J]. Int. J. Impact Eng., 2010, 37(6): 694–702

    Article  Google Scholar 

  13. Lin N, Guo J, Xie F, et al. Comparison of Surface Fractal Dimensions of Chromizing Coating and P110 Steel for Corrosion Resistance Estimation[J]. Appl. Surf. Sci., 2014, 311(9): 330–338

    Article  Google Scholar 

  14. Lin N, Huang X, Zou J, et al. Effects of Plasma Nitriding and Multiple Arc Ion Plating TiN Coating on Bacterial Adhesion of Commercial Pure Titanium via in Vitro Investigations[J]. Surf. Coa. Technol., 2012, 209(38): 212–215

    Article  Google Scholar 

  15. Speer J, Matlock D K, De Cooman B C, et al. Carbon Partitioning into Austenite after Martensite Transformation[J]. Acta Mater., 2003, 51(9): 2611–2622

    Article  Google Scholar 

  16. De Moor E, Speer J G, Matlock D K, et al. Quenching and Partitioning of CMnSi Steels Containing Elevated Manganese Levels[J]. Steel Res. Int., 2012, 83(4): 322–327

    Article  Google Scholar 

  17. Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of Carbon from Supersaturated Plates of Ferrite, with Application to Steel Processing and Fundamentals of the Bainite Transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8(3): 219–237

    Article  Google Scholar 

  18. Clarke A J, Speer J G, Matlock D K, et al. Influence of Carbon Partitioning Kinetics on Final Austenite Fraction during Quenching and Partitioning[J]. Scripta Mater., 2009, 61(2): 149–152

    Article  Google Scholar 

  19. Edmonds D V, Speer J G. Martensitic Steels with Carbide Free Microstructures Containing Retained Austenite[J]. Mater. Sci. Technol., 2010, 26(4): 386–391

    Article  Google Scholar 

  20. Edmonds D V, He K, Rizzo F C, et al. Quenching and Partitioning Martensite-A Novel Steel Heat Treatment[J]. Mater. Sci. Eng., A, 2006, 438: 25–34

    Article  Google Scholar 

  21. Liu H, Sun H, Liu B, et al. An Ultrahigh Strength Steel with Ultrafinegrained Microstructure Produced through Intercritical Deformation and Partitioning Process[J]. Mater. Des., 2015, 83: 760–767

    Google Scholar 

  22. Santofimia M J, Speer J G, Clarke A J, et al. Influence of Interface Mobility on the Evolution of Austenite-Martensite Grain Assemblies during Annealing[J]. Acta Mater., 2009, 57(15): 4548–4557

    Article  Google Scholar 

  23. Liu H, Jin X, Dong H, et al. Martensitic Microstructural Transformations from the Hot Stamping, Quenching and Partitioning Process[J]. Mater. Charact., 2011, 62(2): 223–227

    Article  Google Scholar 

  24. Martis C J, Putatunda S K, Boileau J, et al. The Static and Dynamic Mechanical Properties of a New Low-Carbon, Low-Alloy Austempered Steel[J]. Mater. Sci. Eng., A, 2014, 589: 280–287

    Article  Google Scholar 

  25. Naderi M. Hot Stamping of Ultra High Strength Steels[D]. Germany: RWTH Aachen University, 2007

  26. Clarke A J, Speer J G, Miller M K, et al. Carbon Partitioning to Austenite from Martensite or Bainite during the Quench and Partition (Q&P) Process: A Critical Assessment[J]. Acta Mater., 2008, 56(1): 16–22

    Article  Google Scholar 

  27. Caballero F G, Miller M K, Clarke A J, et al. Examination of Carbon Partitioning into Austenite during Tempering of Bainite[J]. Scripta Mater., 2010, 63(4): 442–445

    Article  Google Scholar 

  28. Shipway P H, Bhadeshia H. Mechanical Stabilisation of Bainite[J]. Mater. Sci. Technol., 1995, 11(11): 1116–1128

    Article  Google Scholar 

  29. Mukherjee K, Hazra S S, Militzer M. Grain Refinement in Dual-Phase Steels[J]. Metall. Mater. Trans. A, 2009, 40(9): 2145–2159

    Article  Google Scholar 

  30. Torralba J M, Navarro A, Campos M. From the TRIP Effect and Quenching and Partitioning Steels Concepts to the Development of New High-Performance, Lean Powder Metallurgy Steels[J]. Mater. Sci. Eng., A, 2013, 573: 253–256

    Article  Google Scholar 

  31. Bouquerel J, Verbeken K, De Cooman B C. Microstructure-Based Model for the Static Mechanical Behaviour of Multiphase Steels[J]. Acta Mater., 2006, 54(6): 1443–1456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Liu  (刘和平).

Additional information

Funded by the School Foundation of North University of China, the National Natural Science Foundation of China (Nos.51206081,51571141), Science and Technology Innovation Project of Shanxi Province(No.2016156), China Postdoctoral Science Foundation(No.2016M590214), Key Research and Development Program of Shanxi Province(No.201603D121002-3) and the Natural Science Foundation of Shanxi Province, China (Nos.2015011036, 2014011024-6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, F., Sun, H. et al. Analysis of microstructure and mechanical properties of ultrafine grained low carbon steel. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 1099–1104 (2016). https://doi.org/10.1007/s11595-016-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1496-3

Keywords

Navigation