Skip to main content
Log in

The width and integer optimization on simplices with bounded minors of the constraint matrices

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we will show that the width of simplices defined by systems of linear inequalities can be computed in polynomial time if some minors of their constraint matrices are bounded. Additionally, we present some quasi-polynomial-time and polynomial-time algorithms to solve the integer linear optimization problem defined on simplices minus all their integer vertices assuming that some minors of the constraint matrices of the simplices are bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khinchine, A.: A quantitative formulation of Kronecker’s theory of approximation. Izvestiya Akademii Nauk SSR Seriya Matematika 12, 113–122 (1948). (in russian)

    Google Scholar 

  2. Banaszczyk, W., Litvak, A.E., Pajor, A., Szarek, S.J.: The flatness theorem for non-symmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24(3), 728–750 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in Rn II: application of K-convexity. Discrete Comput. Geom. 16(3), 305–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dadush, D.: Transference Theorems in the Geometry of Numbers. http://cs.nyu.edu/courses/spring13/CSCI-GA.3033-013/lectures/transference.pptx. Accessed 7 Sept 2015

  5. Rudelson, M.: Distances between non-symmetric convex bodies and the \(MM^*\)-estimate. Positivity 4(2), 161–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haase, C., Ziegler, G.: On the maximal width of empty lattice simplices. Eur. J. Comb. 21, 111–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kantor, J.M.: On the Width of Lattice-Free Simplexes. Cornell University Library (1997). http://arxiv.org/abs/alg-geom/9709026v1

  8. Sebö, A.: An introduction to empty lattice simplexes. In: Cornuéjols, G., Burkard, R.R., Woeginger, R.E. (eds.) LNCS, vol. 1610, pp. 400–414 (1999)

  9. Gribanov, D.V.: The flatness theorem for some class of polytopes and searching an integer point. In: Springer Proceedings in Mathematics & Statistics. Models, Algorithms and Technologies for Network Analysis, vol. 104, pp. 37–45 (2013)

  10. Gribanov, D.V., Veselov, S.I.: On integer programming with bounded determinants. Optim. Lett. doi:10.1007/s11590-015-0943-y (On-line first)

  11. Balázs, K.: A Generalization of Totally Unimodular and Network Matrices. PhD thesis. ProQuest LLC (2014)

  12. Khachiyan, L.G.: Polynomial algorithms in linear programming. Comput. Math. Math. Phys. 20(1), 53–72 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Springer, New York (1995)

  14. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45(1–3), 139–172 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vladimir, E.: Alekseev: on easy and hard hereditary classes of graphs with respect to the independent set problem. Discrete Appl. Math. 132(1–3), 17–26 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V.: NP-hard graph problems and boundary classes of graphs. Theor. Comput. Sci. 389(1–2), 219–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alekseev, V.E., Korobitsyn, D.V., Lozin, V.V.: Boundary classes of graphs for the dominating set problem. Discrete Math. 285(1–3), 1–6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korpelainen, N., Lozin, V.V., Malyshev, D.S., Tiskin, A.: Boundary properties of graphs for algorithmic graph problems. Theor. Computer Sci. 412, 3545–3554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malyshev, D.S.: Continued sets of boundary classes of graphs for colorability problems. Discrete Anal. Oper. Res. 16(5), 41–51 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Malyshev, D.S.: On minimal hard classes of graphs. Discrete Anal. Oper. Res. 16(6), 43–51 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Malyshev, D.S.: A study of the boundary graph classes for colorability problems. J. Appl. Ind. Math. 2, 221–228 (2013)

    Article  MathSciNet  Google Scholar 

  22. Malyshev, D.S.: Classes of graphs critical for the edge list-ranking problem. J. Appl. Ind. Math. 8, 245–255 (2014)

    Article  MathSciNet  Google Scholar 

  23. Malyshev, D.S., Pardalos, P.M.: Critical hereditary graph classes: a survey. Optim. Lett. (2015)

  24. Shevchenko, V.N.: Qualitative Topics in Integer Linear Programming (Translations of Mathematical Monographs). AMS (1996)

  25. Barvinok, A.: Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspect. Algebraic Comb. 38, 91–147 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Schrijver, A.: Theory of Linear and Integer Programming. WileyInterscience Series in Discrete Mathematics. Wiley, New York (1998)

  28. Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: ISSAC’96 Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, pp. 267–274. ACM Press (1996)

  29. Zhendong, W.: Computing the Smith Forms of Integer Matrices and Solving Related Problems (2005)

  30. Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley Publishing Company, Boston (1970)

    Google Scholar 

  31. Gomory, R.E.: On the relation between integer and non-integer solutions to linear programs. Proc. Natl. Acad. Sci. USA 53(2), 260–265 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  32. Papadimitriou, C.H.: On the complexity of integer programming. J. Assoc. Comput. Mach. 28, 765–768 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Russian Foundation for Basic Research, Grants No 16-31-00109-mol-a and No 15-01-06249-A, by RF President Grant MK-4819.2016.1, by LATNA laboratory, National Research University Higher School of Economics. The first author would like to thank Prof. P.M. Pardalos and his academic supervisor Prof. D.S. Malyshev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Gribanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanov, D.V., Chirkov, A.Y. The width and integer optimization on simplices with bounded minors of the constraint matrices. Optim Lett 10, 1179–1189 (2016). https://doi.org/10.1007/s11590-016-1048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1048-y

Keywords

Navigation