Skip to main content
Log in

Knapsack problem with objective value gaps

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We study a 0–1 knapsack problem, in which the objective value is forbidden to take some values. We call gaps related forbidden intervals. The problem is NP-hard and pseudo-polynomially solvable independently on the measure of gaps. If the gaps are large, then the problem is polynomially non-approximable. A non-trivial special case with respect to the approximate solution appears when the gaps are small and polynomially close to zero. For this case, two fully polynomial time approximation schemes are proposed. The results can be extended for the constrained longest path problem and other combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abboud, A., Lewi, K.: Exact weight subgraphs and the k-sum conjecture. In: Fomin, F.V., et al. (eds.) ICALP 2013. Part I, LNCS 7965, pp. 1–12. Springer-Verlag, Berlin Heidelberg (2013)

    Google Scholar 

  2. Barahona, F., Pulleyblank, W.R.: Exact aborescences, matchings and cycles. Discrete Appl. Math. 16, 91–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Halman, N., Nannicini, G., Orlin, J.: A computationally efficient FPTAS for convex stochastic dynamic programs. SIAM J. Optim. 25(1), 317–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17, 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Joksch, H.C.: The shortest route problem with constraints. J. Math. Anal. Appl. 14, 191–197 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karzanov, A.V.: Maximum matching of given weight in complete and complete bipartite graphs. Cybernetics 23, 8–13 (1987). (Translation from Kibernetika 1, 7–11 (1987), in Russian)

    Article  MATH  Google Scholar 

  7. Kellerer, H., Pferschy, U.: A new fully polynomial time approximation scheme for the knapsack problem. J. Comb. Optim. 3, 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  9. Leclerc, M.: Polynomial time algorithms for exact matching problems, Masters Thesis, University of Waterloo, Waterloo (1986)

  10. Li, W., Li, J.: Approximation algorithms for k-partitioning problems with partition matroid constraint. Optim. Lett. 8(3), 1093–1099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  12. Milanic, M., Monnot, J.: The exact weighted independent set problem in perfect graphs and related graph classes. Electron. Notes Discrete Math. 35, 317–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen, T.H.C., Richard, P., Grolleau, E.: An FPTAS for response time analysis of fixed priority real-time tasks with resource augmentation. IEEE Trans. Comput. 64(7), 1805–1818 (2015)

    Article  MathSciNet  Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree problems. J. ACM 29, 285–309 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sahni, S.: General techniques for combinatorial approximation. Oper. Res. 25(6), 920–936 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sahni, S., Horowitz, E.: Combinatorial problems: reducibility and approximation. Oper. Res. 26, 718–759 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Samanta, R., Erzin, A.I., Raha, S., Shamardin, Y.V., Takhonov, I.I., Zalyubovskiy, V.V.: A provably tight delay-driven concurrently congestion mitigating global routing algorithm. Appl. Math. Comput. 255, 92–104 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Schemeleva, K., Delorme, X., Dolgui, A., Grimaud, F., Kovalyov, M.Y.: Lot-sizing on a single imperfect machine: ILP models and FPTAS extensions. Comput. Ind. Eng. 65(4), 561–569 (2013)

    Article  Google Scholar 

  19. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: Mitzenmacher, M. (ed.), STOC, pp. 455–464. Association for Computing Machinery (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Y. Kovalyov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgui, A., Kovalyov, M.Y. & Quilliot, A. Knapsack problem with objective value gaps. Optim Lett 11, 31–39 (2017). https://doi.org/10.1007/s11590-016-1043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1043-3

Keywords

Navigation