Skip to main content
Log in

An inexact alternating direction method of multipliers with relative error criteria

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study an inexact version of the alternating direction method of multipliers (ADMM) for solving two-block separable linearly constrained convex optimization problems. Specifically, the two subproblems in the classic ADMM are allowed to be solved inexactly by certain relative error criteria, in the sense that only two parameters are needed to control the inexactness. Related convergence analysis are established under the assumption that the solution set to the KKT system of the problem is not empty. Numerical results on solving a class of sparse signal recovery problems are also provided to demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. https://web.stanford.edu/~boyd/papers/admm/lasso/lasso.html.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23(4), 2183–2207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  4. Chan, R.H., Tao, M., Yuan, X.M.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imag. Sci. 6(1), 680–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results. In: Rutcor Research Report, Rutgers Center for Operations Research, Rutgers University (2012)

  8. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2), 319–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Figueiredo, M.A.T., Bioucas-Dias, J.M.: Restoration of poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19(20), 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  12. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmaki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology, vol. 34, pp. 59–82. Springer, Netherlands (2014)

  13. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéires. Revue Francaise d’Automatique, Informatique et Recherche Opérationelle. Analyse numérique 9(2), 41–76 (1975)

  14. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

  16. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press, Princeton (1970)

  17. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Anal. 7(4), 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of bregman functions. Math. Oper. Res. 25(2), 214–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to the anonymous referees for their valuable comments and suggestions. We also want to thank Mr. Liang Chen at Hunan University for many useful comments. This work was supported by the National Natural Science Foundation of China (Grant No. 11271117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anping Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Liao, A. & Yang, X. An inexact alternating direction method of multipliers with relative error criteria. Optim Lett 11, 583–596 (2017). https://doi.org/10.1007/s11590-016-1021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1021-9

Keywords

Navigation