Skip to main content
Log in

Capacity management in public service facility networks: a model, computational tests and a case study

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this work, we present a mathematical model to support location decisions oriented to rationalize facility systems in non-competitive contexts. In order to test the model, computational results are shown and an application to a real-world case study, concerning the Higher Education system in an Italian region, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182(1), 40–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya, F., Dell, R., Donoso, P., Marianov, V., Martínez, F., Weintraub, A.: Optimizing location and size of rural schools in Chile. Int. Trans. Oper. Res. 19(5), 695–710 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aros-Vera, F., Marianov, V., Mitchell, J.E.: \(p\)-Hub approach for the optimal park-and-ride facility location problem. Eur. J. Oper. Res. 226, 277–285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Başar, A., Çatay, B., Ünlüyurt, T.: A taxonomy for emergency service station location problem. Optim. Lett. 6(6), 1147–1160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, O., Drezner, Z.: The p-median problem under uncertainty. Eur. J. Oper. Res. 189, 19–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, O., Drezner, Z., Tamir, A., Wesolowsky, G.O.: Optimal location with equitable loads. Ann. Oper. Res. 167(1), 307–325 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruno, G., Genovese, A.: A spatial interaction model for the representation of the mobility of university students on the Italian territory. Netw. Spatial Econ. 12(1), 41–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruno, G., Improta, G.: Using gravity models for the evaluation of new university site locations: a case study. Comput. Oper. Res. 35(2), 436–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucklin, L.P.: Retail gravity models and consumer choice: a theoretical and empirical critique. Econ. Geogr. 47, 489–497 (1971)

    Article  Google Scholar 

  10. Canel, C., Khumawala, B.M.: Multi-period international facilities location: an algorithm and application. Int. J. Prod. Res. 35(7), 1891–1910 (1997)

    Article  MATH  Google Scholar 

  11. Chardaire, P., Sutter, A., Costa, M.C.: Solving the dynamic facility location problem. Networks 28, 117–24 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. CNVSU: Undicesimo rapport sullo stato del sistema universitario italiano (2011). http://www.cnvsu.it/_library/downloadfile.asp?id=11778. Accessed 30 Nov 2013

  13. Craig, J.: The expansion of education. Rev. Res. Educ. 9, 151–213 (1981)

    Google Scholar 

  14. Dell, R.F.: Optimizing army base realignment and closure. Interfaces 28(6), 1–18 (1998)

    Article  Google Scholar 

  15. Dias, J., Captivo, M.E., Clímaco, J.: Capacitated dynamic location problems with opening, closure and reopening of facilities. IMA J. Manag. Math. 17(4), 317–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Application and Theory. Springer, Berlin (2002)

    MATH  Google Scholar 

  17. Espejo, I., Marín, A., Rodríguez-Chía, A.M.: Closest assignment constraints in discrete location problems. Eur. J. Oper. Res. 219(1), 49–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92–118 (2014)

    Article  Google Scholar 

  19. Garnier, M.A., Hage, J.: Class, gender and school expansion in France: a four-systems comparison. Sociol. Educ. 64, 229–250 (1991)

    Article  Google Scholar 

  20. Georgiadis, M.C., Tsiakis, P., Longinidis, P., Sofioglou, M.K.: Optimal design of supply chain networks under uncertain transient demand variations. Omega 39(3), 254–272 (2011)

    Article  Google Scholar 

  21. Hodgson, M.J.: A location-allocation model maximising consumers’ welfare. Reg. Stud. 15, 493–506 (1981)

    Article  Google Scholar 

  22. Joseph, L., Kuby, M.: Gravity modeling and its impacts on location analysis. In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis. Springer, New York (2011)

    Google Scholar 

  23. Leorch, A.G., Boland, N., Johnson, E.L., Nemhauser, G.L.: Finding an optimal stationing policy for the us army in Europe after the force drawdown. Mil. Oper. Res. 2, 39–51 (1996)

    Google Scholar 

  24. Lowe, J.M., Sen, A.: Gravity model applications in health planning: analysis of an urban hospital market. J. Reg. Sci. 36, 437–461 (1996)

    Article  Google Scholar 

  25. McLafferty, S.: Predicting the effect of hospital closure on hospital utilization patterns. Soc. Sci. Med. 27, 255–262 (1988)

    Article  Google Scholar 

  26. Melo, M.T., Nickel, S., Saldanha da Gama, F.: Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33(1), 181–208 (2006)

    Article  MATH  Google Scholar 

  27. Min, H.: The dynamic expansion and relocation of capacitated public facilities: a multi-objective approach. Comput. Oper. Res. 15, 243–252 (1988)

    Article  Google Scholar 

  28. Revelle, C.S., Eiselt, H.A.: Location analysis: a synthesis and survey. Eur. J. Oper. Res. 165, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. ReVelle, C.S., Murray, A.T., Serra, D.: Location models for ceding market share and shrinking services. Omega 35, 533–540 (2007)

    Article  Google Scholar 

  30. Robinson, R., Ralph, J.: Technical change and the expansion of the schooling in the United States, 1890–1970. Sociol. Educ. 57(3), 134–152 (1984)

    Article  Google Scholar 

  31. Shulman, A.: An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Oper. Res. 39(3), 423–436 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sonmez, A.D., Lim, G.J.: A decomposition approach for facility location and relocation problem with uncertain number of future facilities. Eur. J. Oper. Res. 218, 327–338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van Roy, T.J., Erlenkotter, D.: A dual-based procedure for dynamic facility location. Manag. Sci. 28, 1091–1105 (1982)

    Article  MATH  Google Scholar 

  34. Wang, Q., Batta, R., Badhury, J., Rump, C.: Budget constrained location problem with opening and closing of facilities. Comput. Oper. Res. 30, 2047–2069 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wilhelm, W., Han, X., Lee, C.: Computational comparison of two formulations for dynamic supply chain reconfiguration with capacity expansion and contraction. Comput. Oper. Res. 40, 2340–2356 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Genovese.

Appendix A

Appendix A

In the following, we prove that the combination of the three sets of constraints (2), (3), (13) guarantees that fractions of demand assume the same values defined by the expressions (12).

For each service k, consider the following subsets of J:

  • \(T_k \) subset of facilities that did not provide service \(k( {T_k =\left\{ {j\in J:l_{kj} =0} \right\} });\)

  • \(V_k \) subset of facilities at which service k has been closed \(( V_k =\left\{ j\in J:l_{kj} =1,\right. \left. s_{kj} =1 \right\} )\);

  • \(W_k \) subset of facilities that still provide service \(k( {W_k =\left\{ {j\in J:l_{kj} =1,s_{kj} =0} \right\} })\).

Note that the above introduced subsets form a partition of J; in fact, \(V_k \) and \(W_k \) form a partition of the set of facilities providing k(\(V_k \cup W_k =U_k , V_k \cap W_k =\emptyset )\) and \(T_k \) is the complement set of \(U_k \) to J (\(T_k = J-U_k )\).

For each service k and user i, the equivalence between (2, 3, 13) and (12) is trivially proved for any facility j not providing k in the final configuration; i.e., \(\forall j\in T_k \cup V_k . \)

Indeed, conditions (3) impose:

$$\begin{aligned}&x_j^{ik} =0&\qquad \qquad \forall i\in I,\forall k\in K,\forall j\in T_k \cup V_k \end{aligned}$$

similarly to conditions (11), being respectively in \(T_k \) and\( V_k \) \(\alpha _j^{ik} =0\) and \(s_{kj} =1.\)

Then, the equivalence has to be proved only for facilities j still providing k;  i.e., \(j\in W_k .\)

Conditions (12), for each service k,  define a proportional relationship between the fractions of demand assigned to each pair of facilities j and r belonging to \(U_k =V_k \cup W_k .\)

For each pair \(( {j,r})\in U_k \times U_k \), one of the following conditions can occur:

  1. 1.

    \(j\in W_k ,r\in V_k :\) facility j still provides service k (\(s_{kj} =0)\) while r not anymore (\(s_{kr} =1\),\( x_r^{ik} =0)\);

  2. 2.

    \(j\in V_k ,t\in W_k :\) facility r still provides service k (\(s_{kr} =0)\) while j not anymore (\(s_{kj} =1\), \(x_j^{ik} =0)\);

  3. 3.

    \(j,r\in V_k :\) service k has been closed at both facilities j and r (\(s_{kr} =s_{kj} =1\), \(x_r^{ik} =x_j^{ik} =0)\);

  4. 4.

    \(j,r\in W_k : \quad :\) service k is still provided by both facilities j and r (\(s_{kr} =s_{kj} =0)\).

We now demonstrate that conditions (13) become active only in the last case. With this aim, consider the paired conditions associated with ( jr):

$$\begin{aligned} \left\{ {{\begin{array}{l} {x_j^{ik} \le \frac{\alpha _j^{ik} }{\alpha _r^{ik} }x_r^{ik} +s_{kr}} \\ {x_r^{ik} \le \frac{\alpha _r^{ik} }{\alpha _j^{ik} }x_j^{ik} +s_{kj}} \\ \end{array} }} \right. \quad \forall i\in I . \end{aligned}$$

From Table 5, in which the expressions of the above conditions in the single cases are reported, it is easy to understand that in the first three cases the constraints are trivially satisfied \(\forall i\in I\).

Table 5 Possible expressions of conditions (12) for a generic pair \((j,r)\in U_k \times U_k \)

In case d the two conditions become equivalent to the following one:

$$\begin{aligned} x_r^{ik} =\frac{\alpha _r^{ik} }{\alpha _j^{ik} }x_j^{ik} \quad \forall i\in I . \end{aligned}$$

Hence, for a particular user i and service k,  it is possible to express all the fractions of the demand assigned to the facilities in \(W_k =\left\{ {r_1 ,\ldots ,r_w } \right\} \) as a function of the same variable \(x_j^{ik} \) \(( {j\in W_k })\). Therefore, replacing:

$$\begin{aligned} x_r^{ik} =\frac{\alpha _r^{ik} }{\alpha _j^{ik} }x_j^{ik} \quad \forall i\in I,\quad \forall r\in W_k . \end{aligned}$$

in (4), we have

$$\begin{aligned} \sum \nolimits _{j\in J} x_j^{ik}= & {} \sum \nolimits _{j\in T_k } x_j^{ik} +\sum \nolimits _{j\in V_k } x_j^{ik} + \sum \nolimits _{j\in W_k } x_j^{ik}\\= & {} \sum \nolimits _{j\in W_k } x_j^{ik} =x_{r_1 }^{ik} +\cdots +x_{r_w }^{ik} =\left( {\frac{\alpha _{t_1 }^{ik} }{\alpha _j^{ik} }+\cdots +\frac{\alpha _{r_w }^{ik} }{\alpha _j^{ik} }}\right) x_j^{ik} =1 . \end{aligned}$$

Hence:

$$\begin{aligned} x_j^{ik} =\frac{\alpha _j^{ik} }{\alpha _{r_1 }^{ik} +\cdots +\alpha _{r_w }^{ik} }=\frac{\alpha _j^{ik} }{\mathop \sum \nolimits _{r\in W_k } \alpha _r^{ik} } \end{aligned}$$
(14)

For a given service k, Eq. (14) holds for all the facilities in the set \(W_k\) and each user i; then we can generally write:

$$\begin{aligned} x_j^{ik} =\frac{\alpha _j^{ik} }{\mathop \sum \nolimits _{r\in W_k } \alpha _r^{ik} } \quad \forall i\in I,\forall k\in K,\forall j\in W_k \end{aligned}$$
(15)

which is equivalent to (12) \(\forall j\in W_k \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, G., Genovese, A. & Piccolo, C. Capacity management in public service facility networks: a model, computational tests and a case study. Optim Lett 10, 975–995 (2016). https://doi.org/10.1007/s11590-015-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0923-2

Keywords

Navigation