Skip to main content

Advertisement

Log in

Bi-objective hypervolume-based Pareto optimization

A gradient-based approach as an alternative to evolutionary algorithms

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The search for the best trade-off solutions with respect to several criteria (also called the Pareto set) is the main approach pursued in multi-objective optimization when no additional preferences are associated to the objectives. This problem is known to be compliant with the maximization of the hypervolume (or S-metric), consisting in the Lebesgue measure of the dominated region covered by a set of solutions in the objective space, and bounded by a reference point. While several variants of population-based metaheuristics like evolutionary algorithms address formulations maximizing the hypervolume, the use of gradient-based algorithms for this task has been largely neglected in the literature. Therefore, this paper proposes to solve bi-objective problems by hypervolume maximization through a sequential quadratic programming algorithm. After theoretical developments including the analytical expression of the sensitivities of the hypervolume expressed as functions of the gradient of the objectives, the method is applied to six benchmark test cases, demonstrating the efficiency of the proposed method in comparison with a scalarization of the objectives, and with a state-of-the-art multi-objective genetic algorithm. This method is believed to provide an interesting alternative to metaheuristics when the gradients of the objective functions are available at a limited additional cost, a situation which is encountered in versatile applications, for instance with adjoint methods implemented in computational solid mechanics or fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Assis, L.P., Maravilha, A.L., Vivas, A., Campelo, F., Ramírez, J.A.: Multiobjective vehicle routing problem with fixed delivery and optional collections. Optim. Lett. 7(7), 1419–1431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences. In: Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, Canada, July 8–12, vol. 2632, pp. 519–533 (2009)

  3. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  5. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. Theor. Comput. Sci. 425, 104–116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brockhoff, D., Friedrich, T., Neumann, F.: Analyzing hypervolume indicator based algorithms. In: Parallel Problem Solving from Nature—PPSN X, pp. 651–660 (2008)

  7. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE T Evolut. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  8. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum Publishers, New York (2002)

    Book  MATH  Google Scholar 

  9. Deb, K.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization, EMO 2001, pp. 284–298. Springer, Zurich (2001)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Descamps, B., Filomeno Coelho, R.: A lower-bound formulation for the geometry and topology optimization of truss structures under multiple loading. Struct. Multidiscip. O 48(1), 49–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid for computing Pareto front approximations maximizing the S-metric. In: Proceedings of the 4th International Conference on Hybrid Metaheuristics, Dortmund, Germany, October 8–9, pp. 140–156 (2007)

  13. Fleischer, M.: The measure of Pareto optima. Applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) Evolutionary Multi-Criterion Optimization, LNCS, vol. 2632, pp. 519–533. Springer (2003)

  14. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)

    Article  MathSciNet  Google Scholar 

  16. Pardalos, P.M., Steponavičė, I., Z̆ilinskas, A.: Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming. Optim. Lett. 6(4), 665–678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Z̆ilinskas, A.: A one-step worst-case optimal algorithm for bi-objective univariate optimization. Optim. Lett. (2013). Published online

  18. Wright, S., Nocedal, J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  19. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE T Evolut. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Innoviris (Brussels-Capital Region, Belgium) under a BB2B project entitled “Multicriteria optimization with uncertainty quantification applied to the building industry”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Filomeno Coelho.

Appendix: definition of the six test cases

Appendix: definition of the six test cases

$$\begin{aligned}&\mathbf{TC1} \hbox { (concave version of Rendon [8])} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} - (1/(x_1^2 + x_2^2 + 1)) \\ f_2(\mathbf{x}) &{}=&{} - (x_1^2 + 3 x_2^2 + 1) \\ \end{array}\right. \\ \hbox {s.t.:} &{} x_i \in [-3,3], i=1,2 \\ \end{array}\right. \end{aligned}$$
(14)
$$\begin{aligned}&\mathbf{TC2} \hbox { (Murata [8])} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} 2\sqrt{x_1} \\ f_2(\mathbf{x}) &{}=&{} x_1(1-x_2) + 5 \\ \end{array}\right. \\ \hbox {s.t.:} &{} x_1 \in [1,4], x_2 \in [1,2] \\ \end{array}\right. \end{aligned}$$
(15)
$$\begin{aligned}&\mathbf{TC3} \hbox { (Srinivas [8])} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} (x_1 - 2)^2 + (x_2 - 1)^2 + 2 \\ f_2(\mathbf{x}) &{}=&{} 9 x_1 - (x_2-1)^2 \\ \end{array}\right. \\ \hbox {s.t.:} &{} x_1^2 + x_2^2 - 225 \le 0 \\ &{} x_1 - 3 x_2 + 10 \le 0 \\ &{} x_i \in [-20,20], i=1,2 \\ \end{array}\right. \end{aligned}$$
(16)
$$\begin{aligned}&\mathbf{TC4} \hbox { (Tanaka [8])} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} x_1 \\ f_2(\mathbf{x}) &{}=&{} x_2 \\ \end{array}\right. \\ \hbox {s.t.:} &{} -(x_1^2) - (x_2^2) + 1 + 0.1 \cos (16\arctan (x_1/x_2)) \le 0 \\ &{} -0.5 + (x_1 - 0.5)^2 + (x_2 - 0.5)^2 \le 0 \\ &{} x_i \in [0,\pi ], i=1,2 \\ \end{array}\right. \end{aligned}$$
(17)
$$\begin{aligned}&\mathbf{TC5} \hbox { (Osyczka [8])} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} -(25(x_1-2)^2 + (x_2-2)^2 \\ &{}&{} + (x(3)-1)^2 + (x(4)-4)^2 \\ &{}&{} + (x(5)-1)^2) \\ f_2(\mathbf{x}) &{}=&{} x_1^2 + x_2^2 + x(3)^2 + x(4)^2 + x(5)^2 + x(6)^2\\ \end{array}\right. \\ \hbox {s.t.:} &{} -(x_1 + x_2 - 2) \le 0 \\ &{} -(6 - x_1 - x_2) \le 0 \\ &{} -(2 - x_2 + x_1) \le 0 \\ &{} -(2 - x_1 + 3 x_2) \le 0 \\ &{} -(4 - (x_3 - 3)^2 - x_4) \le 0 \\ &{} -((x_5-3)^2 + x_6 - 4) \le 0 \\ &{} x_1 \in [0,10], x_2 \in [0,10], x_3 \in [1,5] \\ &{} x_4 \in [0,6], x_5 \in 1,5], x_6 \in [0,10] \\ \end{array}\right. \end{aligned}$$
(18)
$$\begin{aligned}&\begin{array}{ll} \mathbf{TC6} &{} \hbox { (Deb's M-LFS with additional}\\ &{} \hbox { linear constraints [9] )} \end{array} \left\{ \begin{array}{rl} \mathop {\min }\limits _{\mathbf{X}} &{} \left\{ \begin{array}{lll} f_1(\mathbf{x}) &{}=&{} x_1 \\ f_2(\mathbf{x}) &{}=&{} g(\mathbf{x}) (1 - f_1(\mathbf{x})/g(\mathbf{x})) \\ \end{array}\right. \\ \hbox {s.t.:} &{} a \left| \sin (b\pi (\sin (\theta )(f_2(\mathbf{x})-e) \right. \\ &{} \quad \quad +\left. \cos (\theta )f_1(\mathbf{x}))^c)\right| ^d \\ &{} \quad \quad - \cos (\theta )(f_2(\mathbf{x})-e) \\ &{} \quad \quad - \sin (\theta )f_1(\mathbf{x}) \le 0\\ &{} 0.75 - x_1 - x_2 \le 0 \\ &{} 0.75 - x_2 - x_3 \le 0 \\ &{} 0.75 - x_3 - x_4 \le 0 \\ &{} 0.75 - x_4 - x_5 \le 0 \\ &{} a = 40, b = 4, c = 1, d = 2, e = -1 \\ &{} x_i \in [0,1], i=1,\dots ,5 \\ \end{array}\right. \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filomeno Coelho, R. Bi-objective hypervolume-based Pareto optimization. Optim Lett 9, 1091–1103 (2015). https://doi.org/10.1007/s11590-014-0786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0786-y

Keywords

Navigation