Skip to main content
Log in

Global solutions to a class of CEC benchmark constrained optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper aims to solve a class of CEC benchmark constrained optimization problems that have been widely studied by nature-inspired optimization algorithms. Based on canonical duality theory, these challenging problems can be reformulated as a unified canonical dual problem over a convex set, which can be solved deterministically to obtain global optimal solutions in polynomial time. Applications are illustrated by some well-known CEC benchmark problems, and comparisons with other methods have demonstrated the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Progr. 87(1), 131–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, X.W., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Progr. 129(1), 129–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programmming: Theory and Algorithms, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002)

    Article  MATH  Google Scholar 

  7. Cottle, R.W.: Manifestations of Schur complement. Linear Algebra Appl. 8, 189–211 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, S.C., Gao, D.Y., Sheu, R.L., Wu, S.Y.: Canonical dual approach for solving 0–1 quadratic programming problems. J. Ind. Manag. Optim. 4, 125–142 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. J. Appl. Math. XLVII(3), 487–504 (1989)

    MathSciNet  Google Scholar 

  10. Gao, D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Glob. Optim. 29(4), 377–399 (2004)

    Article  MATH  Google Scholar 

  11. Gao, D.Y., Ruan, N., Sherali, H.D.: Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality. J. Glob. Optim. 45, 473–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, D.Y.: Caonical duality theory: Unified understanding and generalized solution for global optimization problems. Comp. Chem. Eng. 33, 1964–1972 (2009)

    Article  Google Scholar 

  13. Gao, D.Y., Sherali, H.D.: Canonical duality: Connection between nonconvex mechanics and global optimization. In: Advances in Applied Mathematics and Global Optimization, pp. 257–326, Springer (2009)

  14. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Glob. Optim. 47, 463–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization, Tech. Rep, Nanyang Technological University, Singapore (2006)

  16. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Progr. 103(2), 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Löfberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. Taipei (2004)

  18. Lu, C., Fang, S.C., Jin, Q.W., Wang, Z.B., Xing, W.X.: KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J. Optim. 21(4), 1475–1490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 135–155. MIT Press, Cambridge (1995)

  20. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Progr. 136(1), 155–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruan, N., Gao, D.Y.: Canonical duality approach for non-linear dynamical systems, to appear in IMA. J. Appl. Math. doi:10.1093/imamat/hxs067

  22. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform Eval 75, 1–16 (2013)

  23. Sturn, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  24. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Canonical dual approach to solving the maximum cut problem. J. Glob. Optim. 54, 341–352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, X.J., Yang, C.H., Gui, W.H.: State transition algorithm. J. Ind. Manag. Optim. 8(4), 1039–1056 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zhou, X.J., Yang, C.H., Gui, W.H.: Nonlinear system identification and control using state transition algorithm. Appl. Math. Comput. 226, 169–179 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Nick Sahinidis very much for providing us a free license for using the MATLAB/BARON interface. And we would also like to thank two anonymous reviewers and the handling editor, whose suggestions greatly helped to improve the paper’s presentation. This paper was partially supported by a Grant (AFOSR FA9550-10-1-0487) from the US Air Force Office of Scientific Research. Dr. Xiaojun Zhou’s work was supported by the China Scholarship Council and Dr. Chunhua Yang’s work wassupported by the National Science Found for Distinguished Young Scholars of China (Grant No. 61025015) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61321003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Gao, D.Y. & Yang, C. Global solutions to a class of CEC benchmark constrained optimization problems. Optim Lett 10, 457–472 (2016). https://doi.org/10.1007/s11590-014-0784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0784-0

Keywords

Navigation