Skip to main content
Log in

Converging upon basic feasible solutions through Dantzig–Wolfe decomposition

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We derive an important property for solving large-scale integer programs by examining the master problem in Dantzig–Wolfe decomposition. In particular, we prove that if a linear program can be divided into subproblems with affinely independent corner points, then there is a direct mapping between basic feasible solutions in the master and original problems. This has implications for integer programs where the feasible region has integer corner points, ensuring that integer solutions to the original problem will be found even through the decomposition approach. An application to air traffic flow scheduling, which motivated this result, is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Appa, G.: Dantzig–Wolfe decomposition algorithm. Oper. Res. Q. 20(2), 275 (1969)

    Article  Google Scholar 

  2. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertsimas, D., Patterson, S.S.: The air traffic flow management problem with enroute capacities. Oper. Res. 46(3), 406–422 (1998)

    Article  MATH  Google Scholar 

  4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  5. Bixby, R.E., Saltzman, M.J.: Recovering an optimal basis from and interior point solution. Oper. Res. Lett. 15, 169–178 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)

    Article  MATH  Google Scholar 

  7. Gallier, J.H.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann, Burlington (1999)

    MATH  Google Scholar 

  8. Goncalves, A.: Basic feasible solutions and the Dantzig–Wolfe decomposition algorithm. Oper. Res. Q. 19(4), 465–469 (1968)

    Article  Google Scholar 

  9. Goncalves, A.: Mr. goncalves replies. Oper. Res. Q. 20(2), 276 (1969)

    Article  Google Scholar 

  10. Ho, J.K.: Recent advances in the decompostion approach to linear programming. Math. Program. Study 31, 119–127 (1987)

    Article  MATH  Google Scholar 

  11. Ho, J.K., Loute, E.: An advanced implementation of the Dantzig–Wolfe decomposition algorithm for linear programming. Math. Program. 20(1), 303–326 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Megiddo, N.: On finding primal- and dual-optimal bases. ORSA J. Comput. 3(1), 63–65 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rios, J., Ross, K.: Massively parallel Dantzig–Wolfe decomposition applied to traffic flow scheduling. J. Aerosp. Comput. Inf. Commun. 7(1), 32–45 (2010)

    Article  Google Scholar 

  14. Tebboth, J.R.: A computational study of Dantzig–Wolfe Decomposition. PhD thesis, University of Buckingham (2001)

  15. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Math. Program. 1–46 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Rios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rios, J.L., Ross, K. Converging upon basic feasible solutions through Dantzig–Wolfe decomposition. Optim Lett 8, 171–180 (2014). https://doi.org/10.1007/s11590-012-0546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0546-9

Keywords

Navigation