Skip to main content
Log in

Continuum approach to mathematical modelling of multispecies biofilms

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The work presents a contribution to the mathematical modelling of formation and growth of multispecies biofilms in the framework of continuum approach, without claiming to be complete. Mathematical models for biofilms often lead to consider free boundary value problems for nonlinear PDEs. The emphasis is on the qualitative analysis, uniqueness and existence of solutions and their main properties. Biofilm life is a complex biological process formed by several phases from the formation, development of colonies, attachment and detachment of microbial mass from (to) biofilm to (from) bulk liquid. Most of these processes are modelled and discussed. Moreover, some problems of interest for engineering and biological applications are considered. Indeed, we discuss the free boundary value problem related to biofilm reactors extensively used in wastewater treatment, and the invasion of new species into an already constituted biofilm with the successive colonizations. The main mathematical methodology used is the method of characteristics. The original differential problem is converted to integral equations. Then, the fixed point theorem is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Costerton, J.W., Stewart, P.S., Greenberg, E.P.: Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)

    Article  Google Scholar 

  2. Rittman, B.E., McCarty, P.L.: Model of steady-state biofilm kinetics. Biotechnol. Bioeng. 22, 2343–2357 (1980)

    Article  Google Scholar 

  3. Rittman, B.E.: The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng. 24(2), 501–506 (1982)

    Article  Google Scholar 

  4. Wanner, O., Gujer, W.: A multispecies biofilm model. Biotechnol. Bioeng. 28, 314–328 (1986)

    Article  Google Scholar 

  5. Wanner, O., Gujer, W.: Mathematical modelling of mixed-culture biofilms. Biotechnol. Bioeng. 48, 172–184 (1996)

    Article  Google Scholar 

  6. Eberl, H.J., Parker, D.F., Van Loosdrecht, M.: A new deterministic spatiotemporal continuum model for biofilm development. Comput. Math. Methods Med. 3, 161–175 (2001)

    MATH  Google Scholar 

  7. Alpkvist, E., Klapper, I.: A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull. Math. Biol. 69(2), 765–789 (2007)

    Article  MATH  Google Scholar 

  8. Klapper, I., Dockery, J.: Mathematical description of microbial biofilms. SIAM Rev. 52(2), 221–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Acunto, B., Frunzo, L., Klapper, I., Mattei, M.R.: Modeling multispecies biofilms including new bacterial species invasion. Math. Biosci. 259, 20–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mattei, M.R.: Mathematical modelling of multispecies biofilms for wastewater tratment, Ph. D. Thesis, University Paris-Est (2014)

  11. Monds, R.D., O’Toole, G.A.: The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17(2), 73–87 (2009)

    Article  Google Scholar 

  12. El Moustaid, F., Eladdadi, A., Uys, L.: Modeling bacterial attachment to surfaces as an early stage of biofilm development. Math. Biosci. Eng. 10(3), 821–842 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davey, M.E., O’Toole, G.A., Van Loosdrecht, M.: Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Bio. Rev. 64, 847–867 (2000)

    Article  Google Scholar 

  14. Halan, B., Buehler, K., Schmid, A.: Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 30, 453–465 (2012)

    Article  Google Scholar 

  15. Picioreanu, C., Kreft, J.U., van Loosdrecht, M.C.M.: Particle-based multidimensional multispecies biofilm model. J. Appl. Environ. Microbiol. 70, 3024–3040 (2004)

    Article  Google Scholar 

  16. Boltz, J.P., Morgenroth, E., Brockmann, D., Bott, C., Gellner, W.J., Vanrolleghem, P.A.: Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Sci. Technol. 64, 930–944 (2011)

    Article  Google Scholar 

  17. Xavier, J.B., Picioreanu, C., van Loosdrecht, M.: A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ. Microbiol. 7, 1085–1103 (2005)

    Article  Google Scholar 

  18. Singh, R., Paul, D., Jain, R.K.: Biofilms: implications in bioremediation. Trends Microbiol. 14(9), 389–397 (2006)

    Article  Google Scholar 

  19. Gonzo, E.E., Wuertz, S., Rajal, V.B.: Continuum heterogeneous biofilm modela simple and accurate method for effectiveness factor determination. Biotechnol. Bioeng. 109(7), 1779–1790 (2012)

    Article  Google Scholar 

  20. Robertson, S.A., McLean, R.J.C.: Beneficial biofilms. AIMS Bioengin. 2(4), 437–448 (2015)

    Article  Google Scholar 

  21. Gambino, M., Cappitelli, F.: Mini-review: biofilm responses to oxidative stress. Biofouling 32(2), 167–178 (2016)

    Article  Google Scholar 

  22. D’Acunto, B., Frunzo, L.: Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models. Math. Comput. Model. 43, 1596–1606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Capone, F., De Cataldis, V., De Luca, R.: On the nonlinear stability of an epidemic SEIR reaction-diffusion model. Ric. Mat. 62(1), 161–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Capone, F., De Luca, R.: On the stability-instability of vertical throughflows in double diffusive mixtures saturating rotating porous layers with large pores. Ric. Mat. 63(1), 119–148 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Rionero, S.: L2-energy decay of convective nonlinear PDEs reactiondiffusion systems via auxiliary ODEs systems. Ric. Mat. 64(2), 251–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szomolay, B.: Analysis of moving boundary value problem arising in biofilm modelling. Math. Methods Appl. Sci. 31(15), 1835–1859 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. D’Acunto, B., Frunzo, L.: Free boundary problem for an initial cell layer in multispecies biofilm formation. Appl. Math. Lett. 25, 20–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Acunto, B.: Analysis and simulations of the initial phase in multispecies biofilm formation. CAIM 4, 1–23 (2013)

    MathSciNet  Google Scholar 

  29. D’Acunto, B., et al.: Qualitative analysis of the moving boundary problem for a biofilm reactor model. J. Math. Anal. Appl. (2016). doi:10.2016/j.jmaa.21016.02.008

  30. Xavier, J.B., Picioreanu, C., Van Loosdrecht, M.C.M.: A modelling study of the activity and structure of biofilms in biological reactors. Biofilms 1(4), 377–391 (2004)

    Article  Google Scholar 

  31. Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P., Maddox, I.S.: Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb. Cell Fact. 4, 24–45 (2005)

    Article  Google Scholar 

  32. Cheng, K.C., Demirci, A., Catchmark, J.M.: Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 87, 445–456 (2010)

    Article  Google Scholar 

  33. Boltz, J.P., Morgenroth, E., Sen, D.: Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci. Technol. 62, 1821–1836 (2010)

    Article  Google Scholar 

  34. Mašić, A., Bengtsson, J., Christensson, M.: Measuring and modeling the oxygen profile in a nitrifying moving bed biofilm reactor. Math. Biosci. 227, 1–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mašić, A., Eberl, H.J.: A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor. Bull. Math. Biol. 76, 27–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D’Acunto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Acunto, B., Frunzo, L. & Mattei, M.R. Continuum approach to mathematical modelling of multispecies biofilms. Ricerche mat 66, 153–169 (2017). https://doi.org/10.1007/s11587-016-0294-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0294-8

Keywords

Navigation