Skip to main content
Log in

Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We give an existence result of the obstacle parabolic problem:

$$\begin{aligned} \left\{ \begin{array}{ll} u\ge \psi &{}\ \ \text{ a.e. } \text{ in } \ \Omega \times (0,T)\\ \displaystyle \frac{\partial b(x,u)}{\partial t} -div(a(x,t,u,\nabla u))+div(\phi (x,t,u)) =f &{}\ \ \text{ in }\ \Omega \times (0,T) .\\ \end{array} \right. \end{aligned}$$

The main contribution of our work is to prove the existence of an entropy solution without the coercivity condition on \(\phi \). The second term f belongs to \(L^{1}(\Omega \times (0,T))\) and \(b(.,u_0)\in L^1(\Omega )\). The proof is based on the penalization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. 72, 3553–3565 (2010)

  2. Akdim, Y., Bennouna, J., Mekkour, M., Rhoudaf, M.: Renormalized solution of nonlinear degenerated parabolic problems with \(L^{1}\)-data: existence and uniqueness. Recent developments in nonlinear analysis, 327–343, World Sci. Publ., Hackensack, NJ (2010)

  3. Akdim, Y., Bennouna, J., Mekkour, M.: Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities. Electr. J. Differ. Equ. 03, 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Almeida, A., Hasto, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 162–165 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almeida, A., Hasto, P.: Interpolation in variable exponent spaces (to appear in Rev. Mat. Comput)

  6. Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and \(L^{1}\)-data. J. Differ. Equ. 249, 483–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benkirane, A., Youssfi, A.: Regularity for solutions of nonlinear elliptic equations with degenerate coercivity. Ricerche di Matematica. 56, 241–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bénilan, Ph, Boccardo, L., Gallouët, Th, Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^{1}\) theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of renormalized solution for fairly general class of nonlinear parabolic problems. J. Differe. Equ. 177, 331–374 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanchard, D., Redwane, H.: Renormalized solutions for class of nonlinear evolution problems. J. Math. Pure. 77, 117–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boccardo, L., Giachetti, D., Diaz, J.-I., Murat, F.: Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. J. Differ. Equ. 106, 215–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boccardo, L., Orsina, L., Porretta, A.: Some noncoercive parabolic equations with lower order terms in divergence form. J. Evol. Equ. 3.3 (2003). Dedicated to Philippe Bnilan, pp. 407–418

  13. Del Vecchio, T., Posteraro, M.R.: An existence result for nonlinear and noncoercive problems. Nonlinear Anal. 31(1–2), 191–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diening, L.: Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces \(L^{p(.)}\) and \(W^{k,p(.)}\). Math. Nachr. 263, 31–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)(U)}\) and \(W^{m,p(x)}(U)\), J. Math. Anal. Appl. 263 (2001)

  16. Kbiri Alaoui, M., Meskine, D., Souissi, A.: On some class of nonlinear parabolic inequalities in Orlicz spaces. Nonlinear Anal. 74, 5863–5875 (2011)

  17. Kovacik, O., Rakosnik, J.: On spaces \(L^{p(x)}(\Omega )\) and \(W^{1, p(x)}(\Omega )\). Czechoslovak Math. J. 41(116), 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary problems. Proc. Roy. Soc. Edinburgh Sect. A 89, 321–366 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, J.-L.: Quelques méthodes de resolution des problémes aux limites non lineaires. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  20. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 116–162 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Radice, T., Zecca, G.: Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients. Ricerche di Matematica Mat. 63(2), 355–367 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Redwane, H.: Solution renormalisé de problémes paraboliques et elliptiques nonlineaires. Ph.D. Rouen (1997)

  23. Simon, J.: Compact set in the space \(L^{p}(0,T,B)\). Ann. Mat. Pura, Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bennouna.

Appendix

Appendix

Now we state an embedding theorem, well-known Gagliardo-Nirenberg embedding theorem, in the framework of Lebesgue-Sobolev generalized, that will play a central role in our work (see [20] for the case where p is constant).

Lemma 3.6

(Gagliardo-Nirenberg generalized) Let v be a function in \(W^{1,q(.)}_{0}(\Omega )\cap L^{\rho (.)}(\Omega )\) with \(q,\rho \in P^{log}(\Omega ),1<q^{-}\le q(x)\le q^{+}< N, 1<\rho ^{-}\le \rho (x)\le \rho ^{+}< N\). Then there exists a positive constant C, depending on \(N,\ q(x)\) and \(\rho (x)\), such that

$$\begin{aligned} \parallel v\parallel _{L^{\gamma (.)}(\Omega )}\le C\parallel \nabla v\parallel _{(L^{q(.)}(\Omega ))^{N}}^{\theta }\parallel v\parallel ^{1-\theta }_{L^{\rho (.)}(\Omega )} \end{aligned}$$

for every \(\theta \) and \(\gamma (.)\) satisfying

$$\begin{aligned} 0\le \theta \le 1,\quad 1\le \gamma (.)\le +\infty ,\quad \frac{1}{\gamma (.)}= \theta \left( \frac{1}{q(.)}-\frac{1}{N}\right) +\frac{1-\theta }{\rho (.)} \end{aligned}$$

Proof

We prove the interpolation:

$$\begin{aligned} ||u||_{L^{p(.)}}\le C ||u||^{\theta }_{L^{p_{1}(.)}}|| u||^{1-\theta }_{L^{p_{2}(.)}} \, \text{ with } \quad \frac{1}{p(.)}=\frac{\theta }{p_{1}(.)}+\frac{1-\theta }{p_{2}(.)} \end{aligned}$$

By Hölder inequality, where \(\displaystyle q(.)=\frac{p_{1}(.)}{(1-\theta )p(.)}\) and \(\displaystyle q'(.)=\frac{p_{2}(.)}{\theta p(.)}\), one has

$$\begin{aligned}&\displaystyle \int _{\Omega }\Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\\&\quad \le C_{1} \Bigg \Vert \Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}|| u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{(1-\theta )p(x)}\Bigg \Vert _{L^{q(.)}}\Bigg \Vert \Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{\theta p(x)} \Bigg \Vert _{L^{q'(.)}} \nonumber \\&\quad \le C_{1} \Bigg \Vert \Bigg |\frac{u}{||u||_{L^{p_{1}(.)}}} \Bigg |^{(1-\theta )p(x)}\Bigg |\frac{||u||_{L^{p_{1}(.)}}}{||u||_{L^{p_{2}(.)}}} \Bigg |^{(1-\theta )^{2}p(x)} \Bigg \Vert _{L^{q(.)}}\Bigg \Vert \nonumber \\&\qquad \times \Bigg |\frac{u}{||u||_{L^{p_{2}(.)}}} \Bigg |^{\theta p(x)}\Bigg |\frac{||u||_{L^{p_{2}(.)}}}{||u||_{L^{p_{1}(.)}}} \Bigg |^{\theta ^{2}p(x)} \Bigg \Vert _{L^{q'(.)}} \end{aligned}$$

As, \(\displaystyle p^{-}\le p(.)\le p^{+}\) that is \(\displaystyle \theta ^{2}p^{-}\le \theta ^{2}p(.)\le \theta ^{2}p^{+} \) and \(\displaystyle (1-\theta )^{2}p^{-}\le (1-\theta )^{2}p(.)\le (1-\theta )^{2}p^{+}\), then we have:

$$\begin{aligned} \Bigg |\frac{||u||_{L^{p_{1}(.)}}}{||u||_{L^{p_{2}(.)}}} \Bigg |^{(1-\theta )^{2}p(x)}\le max \left( \Bigg |\frac{||u||_{L^{p_{1}(.)}}}{||u||_{L^{p_{2}(.)}}} \Bigg |^{(1-\theta )^{2}p^{+}};\Bigg |\frac{||u||_{L^{p_{1}(.)}}}{||u||_{L^{p_{2}(.)}}} \Bigg |^{(1-\theta )^{2}p^{-}} \right) \end{aligned}$$

which implies

$$\begin{aligned}&\displaystyle \int _{\Omega }\Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\\&\quad \le C_{2} \Bigg \Vert \Bigg |\frac{u}{||u||_{L^{p_{1}(.)}}} \Bigg |^{(1-\theta )p(x)}\Bigg \Vert _{L^{q(.)}}\Bigg \Vert \Bigg |\frac{u}{||u||_{L^{p_{2}(.)}}} \Bigg |^{\theta p(x)}\Bigg \Vert _{L^{q'(.)}}\\&\quad \le C_{2} max\left( \Bigg (\int _{\Omega } \Bigg |\frac{u}{||u||_{L^{p_{1}(.)}}} \Bigg |^{p_{1}(x)}\,dx \Bigg )^{\frac{1}{q^{-}}};\, \Bigg (\int _{\Omega } \Bigg |\frac{u}{||u||_{L^{p_{1}(.)}}} \Bigg |^{p_{1}(x)}\,dx \Bigg )^{\frac{1}{q^{+}}}\right) \\&\qquad \times \, max\left( \Bigg (\int _{\Omega } \Bigg |\frac{u}{||u||_{L^{p_{2}(.)}}} \Bigg |^{p_{2}(x)}\,dx \Bigg )^{\frac{1}{q'^{-}}};\Bigg (\int _{\Omega } \Bigg |\frac{u}{||u||_{L^{p_{2}(.)}}} \Bigg |^{p_{2}(x)}\,dx \Bigg )^{\frac{1}{q'^{+}}}\right) \end{aligned}$$

Due to definition of the Luxambourg’s norm, and the fact that \(\displaystyle \frac{1}{q^{+}}\le \frac{1}{q^{-}},\quad \displaystyle \frac{1}{q'^{+}}\le \frac{1}{q'^{-}}\)

We obtain

$$\begin{aligned} \displaystyle \int _{\Omega }\Bigg |\frac{u(x)}{||u(x)||^{\theta } _{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\le & {} C_{2} \Bigg (\int _{\Omega }\Bigg |\frac{u}{||u||_{L^{p_{1}(.)}}} \Bigg |^{p_{1}(x)}\,dx \Bigg )^{\frac{1}{q^{+}}}\nonumber \\&\,\times \Bigg (\int _{\Omega }\Bigg |\frac{u}{||u||_{L^{p_{2}(.)}}} \Bigg |^{p_{2}(x)}\,dx \Bigg )^{\frac{1}{q'^{+}}}\le C_{3}. \end{aligned}$$

Firstly: If \( C_{3} \le 1\), Then \(\displaystyle \int _{\Omega }\Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\le 1,\) which give

$$\begin{aligned} \displaystyle \Vert u\Vert _{p(.)}\le \Vert u\Vert ^{\theta }_{p_{1}(.)}\Vert u\Vert ^{1-\theta }_{p_{2}(.)} \end{aligned}$$

Secondly: If \(C_{3} \ge 1\), we have \(\displaystyle 1\le p(.) \Rightarrow \frac{1}{ C^{p(.)}_{3}}\le \frac{1}{ C_{3}}\) which implies

$$\begin{aligned} \displaystyle \int _{\Omega }\Bigg |\frac{u(x)}{C_{3}||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\le & {} \int _{\Omega }\frac{1}{ C_{3}}\Bigg |\frac{u(x)}{||u(x)||^{\theta }_{L^{p_{1}(.)}}||u(x)||^{1-\theta }_{L^{p_{2}(.)}}}\Bigg |^{p(x)}\,dx\nonumber \\\le & {} 1. \end{aligned}$$

which yields

$$\begin{aligned} \Vert u\Vert _{p(.)}\le C_{3} \Vert u\Vert ^{\theta }_{p_{1}(.)}\Vert u\Vert ^{1-\theta }_{p_{2}(.)} \end{aligned}$$
(3.74)

Finally

$$\begin{aligned} \Vert u\Vert _{p(.)}\le C \Vert u\Vert ^{\theta }_{p_{1}(.)}\Vert u\Vert ^{1-\theta }_{p_{2}(.)} ,\quad \text{ With }\quad C=\max (C_{3},1) \end{aligned}$$
(3.75)

Let \(p\in P^{log}(\Omega )\) and \(\gamma (.)\in C({\overline{\Omega }})\), with \(1\le p_{-}\le p^{+}< N\) and \(p(.)\le \gamma (.)\le q^{*}(.)\)

According to Lemma 2.1 and interpolation (3.75), we get

$$\begin{aligned} \displaystyle \frac{1}{\gamma (.)}= & {} \frac{\theta }{q^{*}(.)}+\frac{(1-\theta )}{p(.)}= \theta \left( \frac{1}{q(.)}-\frac{1}{N}\right) +\frac{(1-\theta )}{p(.)}\\ \displaystyle ||u||_{\gamma (.)}\le & {} C ||u||^{1-\theta }_{p(.)}||u||^{\theta }_{q^{*}(.)}\\\le & {} C||u||^{1-\theta }_{p(.)}||\nabla u||^{\theta }_{q(.)} \end{aligned}$$

\(\square \)

We give a corollary which is the parabolic version of Lemma 3.6.

Corollary 3.1

Let \(v\in L^{q^{-}}((0,T),W_{0}^{1,q(.)}(\Omega ))\cap L^{\infty }((0,T),L^{2}(\Omega ))\), with \( q\in P^{log}(\Omega )\) and  \(1<q^{-}\le q(x)\le q^{+}< N\), then \(v\in L^{\sigma (.)}(\Omega )\) with \(\sigma (.)=q(.)(\frac{N+2}{N})\) and

$$\begin{aligned} \int _{Q_{T}}|v|^{\sigma (x)}\,dx\,dt&\le C\max \Bigg (\parallel v\parallel ^{\frac{2 q^{+}}{N}}_{L^{\infty }(0,T,L^{2}(\Omega ))};\parallel v\parallel ^{\frac{2 q^{-}}{N}}_{L^{\infty }(0,T,L^{2}(\Omega ))}\Bigg )\\&\quad \times \max \left( \Bigg (\int _{Q_{T}}\Big |\nabla v|^{q(x)}dxdt\Bigg )^{\frac{q^{+}}{q^{-}}};\Bigg (\int _{Q_{T}}|\nabla v|^{q(x)}dxdt\Bigg )^{\frac{q^{-}}{q^{+}}}\right) \end{aligned}$$

Proof

We choose \(\theta =\frac{N}{N+2}\) in Lemma 3.6, then \(\sigma (.)=q(.)(\frac{N+2}{N})\) and

$$\begin{aligned} \parallel v\parallel _{L^{\sigma (.)}(\Omega )}\le C\parallel v\parallel ^{(1-\theta )}_{L^{2}(\Omega )} \parallel v\parallel ^{\theta }_{L^{q(.)}(\Omega )} \end{aligned}$$

By Lemma 2.1 we have

$$\begin{aligned} \int _{\Omega }|v|^{\sigma (x)}dx\le \max \Big (\parallel v\parallel ^{\sigma ^{+}}_{L^{\sigma (.)}(\Omega )} ; \parallel v\parallel ^{\sigma ^{-}}_{L^{\sigma (.)}(\Omega )}\Big ) \end{aligned}$$

Combining Gagliardo-Nirenberg inequalities generalized (see Lemmas  3.6) and (2.1), one has

$$\begin{aligned} \parallel v\parallel ^{\sigma ^{+}}_{L^{\sigma (.)}(\Omega )}\le & {} C\parallel v\parallel ^{(1-\theta )\sigma ^{+}}_{L^{2}(\Omega )}\nonumber \\&\times \max \left( \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg )^ {\frac{\theta \sigma ^{+}}{q^{+}}}, \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg )^ {\frac{\theta \sigma ^{+}}{q^{-}}}\right) \end{aligned}$$

and

$$\begin{aligned} \parallel v\parallel ^{\sigma ^{-}}_{L^{\sigma (.)}(\Omega )}\le & {} C\parallel v\parallel ^{(1-\theta )\sigma ^{-}}_{L^{2}(\Omega )(\Omega )}\nonumber \\&\times \max \left( \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg )^ {\frac{\theta \sigma ^{-}}{q^{+}}} , \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg ) ^{\frac{\theta \sigma ^{-}}{q^{-}}}\right) \end{aligned}$$

Moreover, \(\sigma (.)=q(.)(\frac{N+2}{N})\) implies \(\frac{\theta \sigma ^{+}}{q^{+}}= \frac{\theta \sigma ^{-}}{q^{-}}=1.\) Then

$$\begin{aligned} \parallel v\parallel ^{\sigma ^{+}}_{L^{\sigma (.)}(\Omega )}\le & {} C\parallel v\parallel ^{2\frac{q^{+}}{N}}_{L^{2}(\Omega )}\max \left( \int _{\Omega }|\nabla v|^{q(x)}\,dx , \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg )^ {\frac{q^{+}}{q^{-}}}\right) \\ \parallel v\parallel ^{\sigma ^{-}}_{L^{\sigma (.)}(\Omega )}\le & {} C\parallel v\parallel ^{2\frac{q^{-}}{N}}_{L^{2}(\Omega )}\max \left( \int _{\Omega }|\nabla v|^{q(x)}\,dx , \Bigg (\int _{\Omega }|\nabla v|^{q(x)}\,dx\Bigg )^{\frac{q^{-}}{q^{+}}}\right) \end{aligned}$$

Finally

$$\begin{aligned}&\max \Big (\parallel v\parallel ^{\sigma ^{+}}_{L^{\sigma (.)}(\Omega )}, \parallel v\parallel ^{\sigma ^{-}}_{L^{\sigma (.)}(\Omega )}\Big ) \\&\quad \le C\max \Big (\parallel v\parallel ^{\frac{2 q^{+}}{N}}_{L^{2}(\Omega )},\parallel v\parallel ^{\frac{2 q^{-}}{N}} _{L^{2}(\Omega )}\Big )\nonumber \\&\qquad \times \max \left( \Bigg (\int _{\Omega }\Big |\nabla v|^{q(x)}dx\Bigg )^{\frac{q^{+}}{q^{-}}},\Bigg (\int _{\Omega }|\nabla v|^{q(x)}dx\Bigg )^{\frac{q^{-}}{q^{+}}}\right) \end{aligned}$$

and so we can conclude the Proof of corollary 3.1 . \(\square \)

In order to prove the existence results, we prove a technical lemma (we follow the same method used in [8], and in [13] in the case where the function p(.) is constant), that yields two estimates for \(|u|^{p(x)-1}\) and \(|\nabla u|^{p(x)-1}\) in the Lorentz spaces with variable exponents \(L^{\frac{p(.)(N+1)-N}{N(p(.)-1)},\infty }(Q_{T})\) and \(L^{\frac{p(.)(N+1)-N}{(N+1)(p(.)-1)},\infty }(Q_{T})\) respectively.

Lemma 3.7

Assume that \(\Omega \) is an open set of \(\mathbb {R}^{N}\) of finite measure and \(1<p^{-}\le p(x)\le p^{+}<N\). Let u be a measurable function satisfying \(T_{k}(u)\in V\cap L^{\infty }((0,T);L^{2}(\Omega ))\) for every k and such that:

$$\begin{aligned} \sup _{t\in (0,T)}\int _{\Omega }|T_{k}(u)|^{2}\,dx+\int _{Q_{T}}|\nabla T_{k}(u)|^{p(x)}\,dx\,dt\le Mk\quad \forall \ k>0, \end{aligned}$$
(3.76)

where M is a positive constant. Then

$$\begin{aligned} \Vert |u|^{p(x)-1}\Vert _{L^{\frac{p(.)(N+1)-N}{N(p(.)-1)},\infty }(Q_{T})}\le & {} C \left[ M^{ \left( \frac{p^{-}}{N}+1\right) \frac{N}{N+(p^{-})^{'}}}+(\text{ meas }(Q_{T}))^{\frac{N}{N+(p^{-})^{'}}}\right] \nonumber \\\end{aligned}$$
(3.77)
$$\begin{aligned} \Vert |\nabla u|^{p(x)-1}\Vert _{L^{\frac{p(.)(N+1)-N}{(N+1)(p(.)-1)},\infty }(Q_{T})}\le & {} C\left[ M^{\frac{(N+2)(p^{-}-1)}{p^{-}(N+1)-N}}+(\text{ meas }(Q_{T}))^{\frac{N+1}{N+(p^{-})^{'}}}\right] \end{aligned}$$
(3.78)

where C is a constant depend only on N, \(p^{-}\) and \(p^{+}\).

Proof

In the case of \(k>1\), we have

$$\begin{aligned} \displaystyle \int _{\{|u|>k\}} k^{\frac{p^{-}(N+2)}{N}} \,dx\,dt\le \displaystyle \int _{\{|u|>k\}} k^{\frac{p(x)(N+2)}{N}} \,dx\,dt \le \displaystyle \int _{Q_{T}}|T_{k}u|^{\frac{p(x)(N+2)}{N}}\,dx\,dt \end{aligned}$$

That is

$$\begin{aligned} \displaystyle k^{\frac{p^{-}(N+2)}{N}}meas \{ (x,t)\in Q_{T} \,:\, |u|> k\} < \int _{Q_{T}}|T_{k}u|^{\frac{p(x)(N+2)}{N}}\,dx\,dt \end{aligned}$$

By Gagliardo-Niremberg (see Corollary 3.1), we have

$$\begin{aligned}&\displaystyle k^{\frac{p^{-}(N+2)}{N}} meas \{ (x,t)\in Q_{T} \,:\, |u|> k\}\\&\quad \le \int _{Q_{T}}|T_{k}(u)|^{\frac{p(x)(N+2)}{N}}\,dx\,dt\\&\quad \le C\max \left( \sup _{t\in (0,T)}\Bigg (\int _{\Omega }| T_{k}(u)|^{2}dx\Bigg ) ^{\frac{p^{+}}{N}} ;\sup _{t\in (0,T)}\Bigg (\int _{\Omega }| T_{k}(u)|^{2}dx\Bigg )^{\frac{p^{-}}{N}}\right) \\&\qquad \times \max \left( \Bigg (\int _{Q_{T}}|\nabla T_{k}u|^{p(x)}dxdt \Bigg )^{\frac{p^{+}}{p^{-}}};\Bigg (\int _{Q_{T}}|\nabla T_{k}u|^{p(x)} dxdt\Bigg )^{\frac{p^{-}}{p^{+}}}\right) \end{aligned}$$

Moreover, \( |T_{k}(u)|\le k\) implies \(\displaystyle \int _{\Omega }|T_{k}(u)|^{2}dx\le k^{2}\text{ meas }(\Omega ),\) then \(\frac{1}{k^{2}\text{ meas }(\Omega )}\displaystyle \int _{\Omega }|T_{k}(u)|^{2}dx\le 1\).

Since \(k>1\) and by Lemma 2.1, we get

$$\begin{aligned} \text{ meas }(\Omega )\le \displaystyle \int _{\{|u|>k\}}|T_{k}(u)|^{p^{*}(x)}dx\le \displaystyle \int _{\Omega }|T_{k}(u)|^{p^{*}(x)}dx\le c_{1} \displaystyle \int _{\Omega }|\nabla T_{k}(u)|^{p(x)}, \end{aligned}$$

which implies

$$\begin{aligned} 1\le \frac{c_{1}}{meas(\Omega )} \displaystyle \int _{\Omega }|\nabla T_{k}(u)|^{p(x)}dx. \end{aligned}$$

Then for some constant \(C>0\), the result is

$$\begin{aligned}&\displaystyle k^{\frac{p^{-}(N+2)}{N}} meas \{ (x,t)\in Q_{T} \,:\, |u|> k\} \nonumber \\&\quad \le C\sup _{t\in (0,T)} \Bigg (\int _{\Omega }| T_{k}(u)|^{2}\,dx\Bigg )^{\frac{p^{-}}{N}} \Bigg (\int _{Q_{T}}\Big |\nabla T_{k}u|^{p(x)}dxdt\Bigg )\nonumber \\&\quad \le C \big (MK\big )^{\frac{p^{-}}{N}+1} \end{aligned}$$
(3.79)

or equivalently (taking \(k=h^{\frac{1}{p^{-}-1}}\)), for every \(h>0\)

$$\begin{aligned} h^{\frac{1}{p^{-}-1}\frac{p^{-}(N+2)}{N}}\text{ meas }\{(x,t)\in Q_{T} \,:\, |u|^{p(x)-1}> h\}\le CM^{\frac{p^{-}}{N}+1}\times h^{\frac{1}{p^{-}-1} \left( \frac{p^{-}}{N}+1\right) }, \end{aligned}$$

we deduce that

$$\begin{aligned} \text{ meas }\{(x,t)\in Q_{T} \,:\, |u|^{p(x)-1}> h\}\le CM^{\frac{p^{-}}{N}+1}\times h^{-\frac{N+(p^{-})^{'}}{N}}. \end{aligned}$$
(3.80)

Using the embedding in Lorentz space with variable exponent

$$\begin{aligned} L^{\eta ^{+},\infty }(Q_T)\hookrightarrow L^{\eta (.),\infty }(Q_T) \end{aligned}$$
(3.81)

with \(\eta (.)=\frac{p(.)(N+1)-N}{N(p(.)-1)}\), and the fact that \(\eta ^{+}\le \frac{N+(p^{-})^{'}}{N}\), we have:

$$\begin{aligned}&\displaystyle |||u|^{p(x)-1}||_{L^{\eta (.),\infty }(Q_{T})}\le C|||u|^{p(x)-1}||_{L^{\frac{N+(p^{-})^{'}}{N},\infty }(Q_{T})}\\&\quad \le C sup_{h>0} h\,\left[ meas\{(x,t)\in Q_{T}:\,\,|u|^{p(x)-1}>h \}\right] ^{\frac{N}{N+(p^{-})^{'}}} \\&\quad \le C sup_{0<h<1} h \, \left[ meas\{(x,t)\in Q_{T}:\,\,|u|^{p(x)-1}>h \}\right] ^{\frac{N}{N+(p^{-})^{'}}}\\&\qquad +\,Csup_{1\le h <h_{0}} h \, \left[ meas\{(x,t)\in Q_{T}:\,\,|u|^{p(x)-1}>h \}\right] ^{\frac{N}{N+(p^{-})^{'}}}\\&\qquad +\,Csup_{ h>h_{0}} h \, \left[ meas\{(x,t)\in Q_{T}:\,\,|u|^{p(x)-1}>h \}\right] ^{\frac{N}{N+(p')^{+}}}\\&\quad \le 2C h_{0}(\text{ meas }(Q_{T}))^{\frac{N}{N+(p^{-})^{'}}}+ C M^{ \left( \frac{p^{-}}{N}+1\right) \frac{N}{N+(p^{-})^{'}}}. \end{aligned}$$

Taking \(h_0=M^{(\frac{p^{-}}{N}+1)\frac{N}{N+(p^{-})^{'}}}+1\) we have (3.77).

Now we prove the estimate involving the gradient of u, for every \(k>1\) and for every \(\lambda >0\) we have:

$$\begin{aligned} meas\{(x,t)\in Q_T \,:\,|\nabla u|>\lambda \}\le & {} meas\{(x,t)\in Q_T\,:\, |\nabla u|>\lambda \,\text{ and }\,|u|\le k\}\\&+ meas\{(x,t)\in Q_T\,:\, |\nabla u|>\lambda \,\text{ and }\, |u|>k\}. \end{aligned}$$

In the case of \(\lambda >1\) and by (3.76), we know that

$$\begin{aligned} \displaystyle \lambda ^{p^{-}}meas \{(x,t)\in Q_T \,:\,|\nabla u|>\lambda \, \text{ and }\, |u|\le k \}\le & {} \int \int _{|u|\le k}\lambda ^{p^{-}}\,dx\,dt\\\le & {} \int \int _{Q_T}|\nabla T_k|^{p(x)} \,dx\,dt.\\\le & {} Mk \end{aligned}$$

That is \(meas \{(x,t)\in Q_T\,:\, |\nabla u|^{p(x)-1}>\lambda \, \text{ and }\, |u|\le k \}\le \frac{Mk}{\lambda ^{(p^{-})'}}\).

On the other hand by (3.79), we have:

$$\begin{aligned} meas \{(x,t)\in Q_T \,:\,|\nabla u|^{p(x)-1}>\lambda \, \text{ and }\, |u|> k \}\le C M^{\frac{p^{-}}{N}+1} k^{\frac{-p^{-}(N+2)}{N}}. \end{aligned}$$

Then

$$\begin{aligned} meas \{(x,t)\in Q_T\,:\, |\nabla u|^{p(x)-1}>\lambda \}\le & {} \frac{Mk}{\lambda ^{(p^{-})'}}+C M^{\frac{p^{-}}{N}+1} k^{\frac{-p^{-}(N+2)}{N}}\\\le & {} \frac{Mk}{\lambda ^{(p^{-})'}}+C M^{\frac{p^{-}}{N}+1} k^{-\frac{p^{-}(N+1)-N}{N}}. \end{aligned}$$

If we Take \(k=M^{\frac{1}{N+1}}\lambda ^{\frac{N}{(N+1)(p^{-}-1)}},\) we have

$$\begin{aligned} meas \{(x,t)\in Q_T \,:\,|\nabla u|^{p(x)-1}>\lambda \}\le C\frac{M^{\frac{N+2}{N+1}}}{\lambda ^{\frac{P^{-}(N+1)-N}{(N+1)(p^{-}-1)}}}. \end{aligned}$$

Thanks to (3.81), we have

$$\begin{aligned}&\displaystyle |||\nabla u|^{p(x)-1}||_{L^{\frac{p(.)(N+1)-N}{(N+1)(p(.)-1)},\infty }(Q_{T})} \nonumber \\&\quad \le C sup_{\lambda >0} \lambda \, \left[ meas\{(x,t)\in Q_{T}:\,\,|\nabla u|^{p(x)-1}>\lambda \}\right] ^{\frac{N+1}{N+(p^{-})^{'}}}\nonumber \\&\quad \le C sup_{0< \lambda <1} \lambda \, \left[ meas\{(x,t)\in Q_{T}:\,\,|\nabla u|^{p(x)-1}> \lambda \}\right] ^{\frac{N+1}{N+(p^{-})^{'}}}\\&\qquad +\,sup_{1\le \lambda <\lambda _{0}} \lambda \, \left[ meas\{(x,t)\in Q_{T}:\,\,|\nabla u|^{p(x)-1}>\lambda \}\right] ^{\frac{N+1}{N+(p^{-})^{'}}}\\&\qquad +\,sup_{ \lambda > \lambda _{0}} \lambda \, \left[ meas\{(x,t)\in Q_{T}:\,\,|\nabla u|^{p(x)-1}>\lambda \}\right] ^{\frac{N+1}{N+(p^{-})^{'}}}\\&\quad \le 2C\lambda _{0}(\text{ meas }(Q_{T}))^{\frac{N+1}{N+(p^{-})^{'}}}+C M^{\frac{(N+2)(p^{-}-1)}{p^{-}(N+1)-N}}. \end{aligned}$$

Then, if we choose \(\lambda _{0}= M^{\frac{(N+2)(p^{-}-1)}{p^{-}(N+1)-N}}+1\), we obtain (3.78) and the Proof of lemma 3.7 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennouna, J., hamdaoui, B.E., Mekkour, M. et al. Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent. Ricerche mat. 65, 93–125 (2016). https://doi.org/10.1007/s11587-016-0255-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0255-2

Keywords

Mathematics Subject Classification

Navigation