Skip to main content
Log in

A contribution to stability theory for nonlinear Neumann problem

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we study the stability of the solutions of some nonlinear Neumann problems, under perturbations of the domains in the Hausdorff complementary topology. We consider the problem

$${{\left\{\begin{array}{c}-\text{ div}\;\left(a\left( x,\nabla u_{\Omega}\right)\right)=0 \;\text{in}\; \Omega \\ {a\left( x, \nabla u_{\Omega}\right) \cdot \nu=0\; \text{on}\; \partial\Omega}\end{array}\right.}}$$

where \({{\mathbf{R}^n \times \mathbf{R}^n \rightarrow \mathbf{R}^n}}\) is a Caratheodory function satisfying the standard monotonicity and growth conditions of order p, 1 < p < ∞. If Ω h is a uniformly bounded sequence of connected open sets in R n, n ≥  2, we prove that if \({{\Omega_{h}^{c} \rightarrow \Omega^{c}}}\) in the Hausdorff metric, \({|\Omega_{h}| \rightarrow |\Omega|}\) and the geodetic distances satisfy the inequality \({d_{\Omega}\left( x,y\right) \leq \liminf_{h} d_{\Omega_{h}} \left( x,y\right)}\) for every \({x, y \in \Omega,}\) then \({\nabla u_{\Omega_h} \rightarrow\nabla u_{\Omega}}\) strongly in L p, provided that W 1, ∞(Ω) is dense in the space L 1, p(Ω) of all functions whose gradient belongs to L p(Ω, R n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bucur D., Varchon N.: A duality approach for the boundary variation of Neumann problems. SIAM J. Math. Anal. 34, 460–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dal Maso G., Ebobisse F., Ponsiglione M.: A stability result for nonlinear Neumann problems under boundary variations. J. Math. Pures Appl. 82, 503–532 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambolle A., Doveri F.: Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. Comm. Partial Differ. Equ. 22, 811–840 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dal Maso G., Toader R.: A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebobisse F., Ponsiglione M.: A duality approach for variational problems in domains with cracks. J. Convex Anal. 11(1), 17–40 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Maz’ya V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  7. Mosco U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Acanfora.

Additional information

Communicated by L. Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acanfora, F. A contribution to stability theory for nonlinear Neumann problem. Ricerche mat. 61, 299–306 (2012). https://doi.org/10.1007/s11587-012-0131-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-012-0131-7

Keywords

Mathematics Subject Classification

Navigation