Skip to main content
Log in

Electrooxidation study of glycerol on synthesized anode electrocatalysts Pd/C and Pd-Pt/C in a Y-shaped membraneless air-breathing microfluidic fuel cell for power generation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrocatalytic activity of laboratory-synthesized electrocatalyst Pd-Pt/C and Pd/C were evaluated for glycerol fuel using a Y-shaped membraneless air-breathing microfluidic fuel cell and half cell in alkaline medium. The prepared electrocatalysts were characterized using XRD, SEM and EDX and TEM. The cathode electrode was commercial Pt (40 wt.%)/high surface area advanced carbon (CHiSPEC-4100). Potassium hydroxide was used as the electrolyte. The maximum open circuit voltage (OCV) of 0.88 V and power density 1.6 mW/cm2 at an operating cell voltage of 0.4 V for Pd-Pt/C were obtained at a cell temperature of 307 K. The synthesized Pd/C gives maximum OCV of 0.8 V and maximum power density 1.3 mW/cm2. The commercial Pd/C produced relatively low OCV (0.52 V) and power density (0.49 mW/cm2) in comparison to synthesized Pd-Pt/C and Pd/C electrocatalysts, respectively. The synthesized Pd-Pt/C electrocatalyst produced three times more power density than the commercial Pd/C electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kjeang E, Djilali N, Sinton D (2009) Microfluidics fuel cells: a review. J Power Sources 186:353–369

    CAS  Google Scholar 

  2. Chou SK, Yang WM, Chua KJ, Li J, Zhang KL (2011) Development of micro power generators–a review. Appl Energy 88:1–16

    CAS  Google Scholar 

  3. Kundu A, Jang JH, Gil JH, Jung CR, Lee HR, Kim SH, Ku B, Oh YS (2007) Micro-fuel cells—current development and applications. J Power Sources 170:67–78

    CAS  Google Scholar 

  4. Qian W, Wilkinson DP, Shen J, Wang H, Zhang J (2006) Architecture for portable direct liquid fuel cells. J Power Sources 154:202–213

    CAS  Google Scholar 

  5. Shukla AK, Raman RK, Scott K (2005) Advances in mixed-reactant fuel cells. Fuel Cells 5:436–447

    CAS  Google Scholar 

  6. Pramanik H, Rathoure AK (2017) Electrooxidation study of NaBH4 in a membraneless microfluidic fuel cell with air breathing cathode for portable power application. Int J Hydrog Energy 42:5340–5350

    CAS  Google Scholar 

  7. Wu HW (2016) A review of recent development: transport and performance modeling of PEM fuel cells. Appl Energy 165:81–106

    CAS  Google Scholar 

  8. Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of Nafion® in simulated fuel cell environments. J Electrochem Soc 143:1498–1504

    CAS  Google Scholar 

  9. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Chichester

    Google Scholar 

  10. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells (1):5–39

  11. Pramanik H, Basu S (2010) Modeling and experimental validation of overpotentials of a direct ethanol fuel cell. Chem Eng Process Process Intensif 49(7):635–642

    CAS  Google Scholar 

  12. Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energy Environ Sci 1(1):101–119

    CAS  Google Scholar 

  13. Gowdhamamoorthi M, Arun A, Kiruthika S, Muthukumaran B (2014) Perborate as novel fuel for enhanced performance of membraneless fuel cells. Ionics 20:1723–1728

    CAS  Google Scholar 

  14. Basu S (2007) Recent trends in fuel cell science and technology. Anamaya Publisher

  15. Ponmani K, Nayeemunisa SM, Kiruthika S, Muthukumaran B (2016) Electrochemical characterization of platinum-based anode catalysts for membraneless fuel cells. Ionics 22:377–387

    CAS  Google Scholar 

  16. Rathoure AK, Pramanik H (2016) Electrooxidation study of methanol using H2O2 and air as mixed oxidant at cathode in air breathing microfluidic fuel cell. Int J Hydrog Energy 41:15287–15294

    CAS  Google Scholar 

  17. Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931

    CAS  PubMed  Google Scholar 

  18. Choban ER, Markoski LJ, Wieckowski A, Kenis PJ (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60

    CAS  Google Scholar 

  19. Ismagilov RF, Stroock AD, Kenis PJ, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378

    CAS  Google Scholar 

  20. Ilie A, Simoes M, Baranton S, Coutanceau C, Martemianov S (2011) Influence of operational parameters and of catalytic materials on electrical performance of direct glycerol solid alkaline membrane fuel cells. J Power Sources 196:4965–4971

    CAS  Google Scholar 

  21. Jambulingam R, Shalma M, Shankar V (2019) Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J Clean Prod 215:245–258

    CAS  Google Scholar 

  22. Jazie AA, Pramanik H, Sinha ASK (2013) Transesterification of peanut and rapesheed oils using waste of animal bone as cost effective catalyst. Mater Renew Sustain Energy 2:1

    Google Scholar 

  23. Simões M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B 93:354–362

    Google Scholar 

  24. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450

    CAS  Google Scholar 

  25. Yildiz G, Kadirgan F (1994) Electrocatalytic oxidation of glycerol I. Behavior of Palladium Electrode in Alkaline Medium. J Electrochem Soc 141:725–730

    CAS  Google Scholar 

  26. Grace AN, Pandian K (2006) Pt, Pt–Pd and Pt–Pd/Ru nanoparticles entrapped polyaniline electrodes—a potent electrocatalyst towards the oxidation of glycerol. Electrochem Commun 8:1340–1348

    CAS  Google Scholar 

  27. Maya-Cornejo J, Guerra-Balcázar M, Arjona N, Álvarez-Contreras L, Valadez FJR, Gurrola MP, Ledesma-García J, Arriaga LG (2016) Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@ Pd/C and Cu@ Pt/C. Fuel 183:195–205

    CAS  Google Scholar 

  28. Zhang Z, Xin L, Qi J, Chadderdon DJ, Li W (2013) Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Appl Catal B 136:29–39

    Google Scholar 

  29. Geraldes AN, da Silva DF, e Silva LG, Spinacé EV, Neto AO, dos Santos MC (2015) Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. J Power Sources 293:823–830

    CAS  Google Scholar 

  30. Jayashree RS, Egas D, Spendelow JS, Natarajan D, Markoski LJ, Kenis PJ (2006) Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid-State Lett 9:A252–A256

    CAS  Google Scholar 

  31. Dector A, Cuevas-Muñiz FM, Guerra-Balcázar M, Godínez LA, Ledesma-García J, Arriaga LG (2013) Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int J Hydrog Energy 38:12617–12622

    CAS  Google Scholar 

  32. Jindal A, Basu S, Chauhan N, Ukai T, Kumar DS, Samudhyatha KT (2017) Application of electrospun CNx nanofibers as cathode in microfluidic fuel cell. J Power Sources 342:165–174

    CAS  Google Scholar 

  33. Kwok YH, Wang YF, Tsang AC, Leung DY (2018) Graphene-carbon nanotube composite aerogel with Ru@ Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Appl Energy 217:258–265

    CAS  Google Scholar 

  34. Moreno-Zuria A, Dector A, Cuevas-Muñiz FM, Esquivel JP, Sabaté N, Ledesma-García J, Arriaga LG, Chávez-Ramírez AU (2014) Direct formic acid microfluidic fuel cell design and performance evolution. J Power Sources 269:783–788

    CAS  Google Scholar 

  35. López–Coronel A, Ortiz–Ortega E, Torres–Pacheco LJ, Guerra–Balcázar M, Arriaga LG, Álvarez–Contreras L, Arjona N (2019) High performance of Pd and PdAg with well-defined facets in direct ethylene glycol microfluidic fuel cells. Electrochim Acta 320:134622

    Google Scholar 

  36. Armenta-González AJ, Carrera-Cerritos R, Moreno-Zuria A, Álvarez-Contreras L, Ledesma-García J, Cuevas-Muñiz FM, Arriaga LG (2016) An improved ethanol microfluidic fuel cell based on a PdAg/MWCNT catalyst synthesized by the reverse micelles method. Fuel 167:240–247

    Google Scholar 

  37. Mahlambi MM, Mishra AK, Mishra SB, Raichur AM, Mamba BB, Krause RW (2012) Layer-by-layer self-assembled metal-ion-(Ag-, Co-, Ni-, and Pd-) doped TiO 2 nanoparticles: synthesis, characterisation, and visible light degradation of rhodamine B. J Nanomater 2012:1

    Google Scholar 

  38. Ganga BG, Santhosh PN, Thomas PJ (2012) Magnetic properties of Ni and Cu-Ni nanoparticles. AIP Conf Proc 1447:425–426

    CAS  Google Scholar 

  39. Chang MH, Chen F, Fang NS (2006) Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel. J Power Sources 159(2):810–816

    CAS  Google Scholar 

  40. Basu D, Basu S (2012) Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int J Hydrog Energy 37(5):4678–4684

    CAS  Google Scholar 

  41. Zhao WY, Ni B, Yuan Q, He PL, Gong Y, Gu L, Wang X (2017) Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv Energy Mater 7(8):1601593

    Google Scholar 

  42. Jin J, Zheng C, Yang H (2014) Natural diatomite modified as novel hydrogen storage material. Funct Mater Lett 7(03):1450027

    Google Scholar 

  43. Ullah K, Ye S, Zhu L, Meng ZD, Sarkar S, Oh WC (2014) Microwave assisted synthesis of a noble metal-graphene hybrid photocatalyst for high efficient decomposition of organic dyes under visible light. Mater Sci Eng B 180:20–26

    CAS  Google Scholar 

  44. He W, Liu J, Qiao Y, Zou Z, Zhang X, Akins DL, Yang H (2010) Simple preparation of Pd–Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J Power Sources 195(4):1046–1050

    CAS  Google Scholar 

  45. Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrog Energy 36:14884–14897

    CAS  Google Scholar 

  46. Banerjee R, Kumar SJ, Mehendale N, Sevda S, Garlapati VK (2019) Intervention of microfluidics in biofuel and bioenergy sectors: technological considerations and future prospects. Renew Sust Energ Rev 01:548–558

    Google Scholar 

  47. Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  48. Pramanik H, Basu S (2011) Cyclic voltammetry of oxygen reduction reaction using Pt-based electrocatalysts on a Nafion-bonded carbon electrode for direct ethanol fuel cell. Indian Chem Eng 53:124–135

    CAS  Google Scholar 

  49. Gupta UK, Pramanik H (2019) Electrooxidation study of pure ethanol/methanol and their mixture for the application in direct alcohol alkaline fuel cells (DAAFCs). Int J Hydrog Energy 44(1):421–435

    CAS  Google Scholar 

  50. Zhiani M, Rostami H, Majidi S, Karami K (2013) Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. Int J Hydrog Energy 38(13):5435–5441

    CAS  Google Scholar 

  51. Rezaei B, Saeidi-Boroujeni S, Havakeshian E, Ensafi AA (2016) Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement. Electrochim Acta 203:41–50

    CAS  Google Scholar 

  52. Kjeang E, Michel R, Harrington DA, Sinton D, Djilali N (2008) An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. Electrochim Acta 54(2):698–705

    CAS  Google Scholar 

  53. Kjeang E, Michel R, Harrington DA, Djilali N, Sinton D (2008) A microfluidic fuel cell with flow-through porous electrodes. J Am Chem Soc 130(12):4000–4006

    CAS  PubMed  Google Scholar 

  54. Neto AO, da Silva SG, Buzzo GS, de Souza RF, Assumpção MH, Spinacé EV, Silva JC (2015) Ethanol electrooxidation on PdIr/C electrocatalysts in alkaline media: electrochemical and fuel cell studies. Ionics. 21(2):487–495

    CAS  Google Scholar 

  55. Gupta UK, Pramanik H (2019) A study on synthesis of chemical crosslinked polyvinyl alcohol-based alkaline membrane for the use in low-temperature alkaline direct ethanol fuel cell. J Electrochem Energy Convers Storage 16:041005

    CAS  Google Scholar 

  56. Modestino MA, Rivas DF, Hashemi SM, Gardeniers JG, Psaltis D (2016) The potential for microfluidics in electrochemical energy systems. Energy Environ Sci 9(11):3381–3391

    CAS  Google Scholar 

  57. Dietrich T (2011) Microchemical engineering in practice. Wiley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiralal Pramanik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2965 kb)

ESM 2

(MP4 22,556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjiara, D., Pramanik, H. Electrooxidation study of glycerol on synthesized anode electrocatalysts Pd/C and Pd-Pt/C in a Y-shaped membraneless air-breathing microfluidic fuel cell for power generation. Ionics 26, 2435–2452 (2020). https://doi.org/10.1007/s11581-019-03385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03385-8

Keywords

Navigation