Skip to main content
Log in

Influence of plasticizer on ionic conductivity of PVC-PBMA polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Plasticized polymer electrolytes comprising of ethylene carbonate as the plasticizing agent in poly (vinyl chloride) [PVC]–poly (butyl methacrylate) [PBMA] blended polymer electrolytes were prepared by solution casting technique. Complex formation, structural elucidation, conductivity, dielectric parameters (Ɛ′, Ɛ″, M′, and M″), thermal stability, and surface morphology are brought out from FTIR, XRD, ac impedance analysis, dielectric studies, thermogravimetry/differential thermal analysis, and scanning electron microscopic studies, respectively. Polymer electrolytes are found to exhibit higher ionic conductivity at higher concentration of plasticizer at the cost of their mechanical stability. Conductivity of 1.879 × 10−4 S cm−1 is exhibited by the polymer electrolyte consisting of 69% of plasticizer with appreciable thermal stability up to 523 K. Temperature and frequency dependence of conductivity is found to follow Vogel Tammann Fulcher relation and Jonscher power law, respectively. Real and imaginary parts of dielectric constants are found to decrease with increase in frequency which could be due to the electrode polarization effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Zhu YS, Wang XJ, Hou YY, Gao XW, Liu LL, Wu YP, Shimizu M (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113

    Article  CAS  Google Scholar 

  2. Sekhon S (2003) Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes. Solid State Ionics 160:301

    Article  CAS  Google Scholar 

  3. Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501

    Article  CAS  Google Scholar 

  4. Radha KP, Selvasekarapandian S, Karthikeyan S, Hema M, Sanjeeviraja C (2013) Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA: NH4F. Ionics 19:1437

    Article  CAS  Google Scholar 

  5. Ji J, Li B, Zhong W-H (2010) Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes. J Phys Chem B 114:13637

    Article  CAS  Google Scholar 

  6. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of poly (vinyl chloride)–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963

    Article  CAS  Google Scholar 

  7. Ulaganathan M, Rajendran S (2011) Novel Li-ion conduction on poly (vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J Appl Electrochem 41:83

    Article  CAS  Google Scholar 

  8. Rajendran S, Babu R, Sivakumar P (2008) Ionic conduction in plasticized PVC/PAN blend polymer electrolytes. Ionics 14:149

    Article  CAS  Google Scholar 

  9. Ji J, Li B, Zhong WH (2010) Simultaneously enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochim Acta 55:9075

    Article  CAS  Google Scholar 

  10. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283

    Article  CAS  Google Scholar 

  11. Sim LN, Majid SR, Arof AK (2014) Effects of 1–butyl–3–methyl imidazolium trifluoromethanesulfonate ionic liquid in poly (ethyl methacrylate)/poly (vinylidenefluoride–co–hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123:190

    Article  CAS  Google Scholar 

  12. Stepniak I (2014) Compatibility of poly (bisAEA4)-LiTFSI–MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode. J Power Sources 247:112

    Article  CAS  Google Scholar 

  13. Pan CY, Gao JH, Zhang Q, Feng Q, Chao M (2008) Preparation and properties of PEO/LiClO4/KH560-SiO2 composite polymer electrolyte by sol-gel composite-in-situ method. J Cent S Univ Technol 15:295

    Article  CAS  Google Scholar 

  14. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334

    Article  CAS  Google Scholar 

  15. Morenoa M, Quijada R, Santa Anaa MA, Benaventea E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112

    Article  Google Scholar 

  16. Ramesh S, Yi J (2009) Structural, thermal, and conductivity studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolyte plasticized by dibutyl phthalate. Ionics 15:725

    Article  CAS  Google Scholar 

  17. Flora XH, Ulaganathan M, Rajendran S (2013) Role of different plasticizers in li-ion conducting poly (acrylonitrile)-poly (methyl methacrylate) hybrid polymer electrolyte. Int J Polym Mater Polym Biomater 62:737

    Article  CAS  Google Scholar 

  18. Das S, Ghosh A (2015) Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochim Acta 171:59

    Article  CAS  Google Scholar 

  19. Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297

    Article  CAS  Google Scholar 

  20. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials and designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001

    Article  Google Scholar 

  21. Felix BD, Lambertus P, Jakobert BJV (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169

    Article  Google Scholar 

  22. Zhou D, Fan LZ, Fan H, Shi Q (2013) Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization. Electrochim Acta 89:334

    Article  CAS  Google Scholar 

  23. Choi J-W, Cheruvally G, Kim Y-H, Kim J-K, Manuel J, Raghavan P, Ahn J-H, Kim K-W, Ahn H-J, Choi DS, Song CE (2007) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178:1235

    Article  CAS  Google Scholar 

  24. Zhang H, Xuan X, Wang J, Wang H (2005) Effect of poly(vinylidene fluoride) on solvation of NaSCN in PEO. Spectrochim Acta A 61:347

    Article  Google Scholar 

  25. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of plasticizers in poly (vinyl alcohol)-based hybrid solid polymer electrolytes. J Appl Polym Sci 90:2794

    Article  CAS  Google Scholar 

  26. Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly (ε-caprolactone) (PCL). Solid State Ionics 252:102

    Article  CAS  Google Scholar 

  27. Hwang JJ, Liu HJ (2002) Influence of organophilic clay on the morphology, plasticizer-maintaining ability, dimensional stability, and electrochemical properties of gel polyacrylonitrile (PAN) nanocomposite electrolytes. Macromolecules 35:7314

    Article  CAS  Google Scholar 

  28. Isa KM, Osman Z, Arof AK, Othman L, Zainol NH, Samin SM, Chong WG, Kamarulzaman N (2014) Lithium ion conduction and ion–polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid State Ionics 268:288

    Article  CAS  Google Scholar 

  29. Vikas Mittal. Functional polymer blends, London New York. 2012.

    Book  Google Scholar 

  30. Morita M, Tanaka H, Ishikawa M, Matsuda Y (1996) Effects of crown ethers on the electrochemical properties of polymeric solid electrolytes consisting of poly (ethylene oxide)-grafted poly (methylmethacrylates). Solid State Ionics 86-88:401

    Article  CAS  Google Scholar 

  31. Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly (ethylene oxide) and hyperbranched poly [bis (triethylene glycol) benzoate] with terminal acetyl groups. Solid State Ionics 134:281

    Article  CAS  Google Scholar 

  32. Rajendran S, Babu RS (2009) Ionic conduction behavior in PVC–PEG blend polymer electrolytes upon the addition of TiO2. Ionics 15:61

    Article  CAS  Google Scholar 

  33. R. J. Sengwa, S. Choudhary, Dielectric properties and fluctuating relaxation processes of poly (methyl methacrylate) based polymeric nanocomposite electrolytes, J Phys Chem Solids 75 (2014) 765.

  34. Nithya H, Selvasekarapandian S, Arun Kumar D, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404–408

    Article  CAS  Google Scholar 

  35. Pradhan DK, Samantary BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on microstructure and electrical properties of a sodium ion conducting composite polymer electrolytes. Ionics 11:95–102

    Article  CAS  Google Scholar 

  36. Frech R, Chintapalli S (1996) Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes. Solid State Ionics 85:61

    Article  CAS  Google Scholar 

  37. Lin-Vien D, Colthup NB (1991) In: Fateley WG, Grasselli JG (eds) The handbook of infrared and Raman characteristic frequencies of organic molecules, Elsevier

  38. Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57

    Article  CAS  Google Scholar 

  39. Schrader B (1995) Infrared and Raman spectroscopy. VCH Publishers. Inc., New York

    Book  Google Scholar 

  40. Uma T, Mahalingam T, Stimming U (2005) Conductivity studies on poly(methyl methacrylate)–Li2SO4 polymer electrolyte systems. Mater Chem Phys 90:245

    Article  CAS  Google Scholar 

  41. Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Impedance studies on plasticized PMMA-LiX [X: CF3SO3 , N(CF3SO2)2 ] polymer electrolytes. Mater Lett 61:2026

    Article  CAS  Google Scholar 

  42. Ramesh S, Koay HL, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A 66:1237

    Article  CAS  Google Scholar 

  43. Jiang J, Gao D, Li Z, Guangyao S (2006) Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym 66:1141

    Article  CAS  Google Scholar 

  44. Rajendran S, Mahendran O, Kannan R (2002) Characterization [(1-x) PMMA-x PVdF] polymer blend electrolyte with li+ ion. Fuel 81:1077

    Article  CAS  Google Scholar 

  45. Achari VB, Reddy TJ, Sharma AK, Rao VN (2007) Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films. Ionics 13:349

    Article  CAS  Google Scholar 

  46. Helan Flora X, Ulaganathan M, Babu RS, Rajendran S (2012) Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for li-ion battery applications. Ionics 18:731

    Article  Google Scholar 

  47. Rajendran S, Babu R, Sivakumar P (2009) Optimization of PVC–PAN-based polymer electrolytes. J Appl Polym Sci 113:1651

    Article  CAS  Google Scholar 

  48. Ramesh S, Ng HM (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 192:2

    Article  CAS  Google Scholar 

  49. Ostrovskii D, Brodin A, Torell LM, Appetecchi GB, Scrosati B (1998) Molecular and ionic interactions in poly (acrylonitrile)-and poly (methylmetacrylate)-based gel electrolytes. J Chem Phys 109:7618

    Article  CAS  Google Scholar 

  50. Stephan AM, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81:752

    Article  Google Scholar 

  51. Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101

    Article  CAS  Google Scholar 

  52. Rhoo H-J, Kim H-T, Park J-K, Hwang T-S (1997) Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Elecrrochimrca Acta 42(10):1571–1579

    Article  CAS  Google Scholar 

  53. Yahya MZ, Arof AK (2003) Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur Polym J 39:897

    Article  CAS  Google Scholar 

  54. Latif F, Aziz M, Ali AM, Yahya MZ (2009) The coagulation impact of 50% epoxidised natural rubber chain in ethylene carbonate-plasticized solid electrolytes. In Macromolecular symposia 277:62–68

    Article  CAS  Google Scholar 

  55. Kalogeras IM, Hagg Lobland HE (2012) J Mater Ed 34:69–94

    CAS  Google Scholar 

  56. I. M. Kalogeras, Glass-transition phenomena in polymer blends, in Encyclopedia of polymer blends, Volume 3: Structure (Ed.: Α.Ι. Isayev), Chapter 1, pp 1–134, Wiley, 2016. ISBN: 978-3-527-31931-2.

  57. Capiglia C, Saito Y, Yamamoto H, Kageyama H, Mustarelli P (2000) Transport properties and microstructure of gel polymer electrolytes. Electrochim Acta 45:1341

    Article  CAS  Google Scholar 

  58. Polu AR, Rhee H-W (2015) Nanocomposite solid polymer electrolytes based on poly(ethyleneoxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323

    Article  CAS  Google Scholar 

  59. Gogulamurali N, Suthanthiraraj SA, Maruthamuthu P (1992) In: Chowdari BVR, Chandra S, Singh S, Srivastava PC (eds) Solid state ionics: materials and applications. World Scientific, Singapore

    Google Scholar 

  60. Venkateswarlu M, Satyanarayana N (1998) AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater Sci Eng B 54:189

    Article  Google Scholar 

  61. Polu AR, Kumar R, Rhee H-W (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125

    Article  CAS  Google Scholar 

  62. Jonscher AK (1977) The universal dielectric response. Nature 267:673

    Article  CAS  Google Scholar 

  63. Das A, Thakur AK, Kumar K (2014) Conductivity scaling and near-constant loss behavior in ion conducting polymer blend. Solid State Ionics 268:185

    Article  CAS  Google Scholar 

  64. Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539

    Article  Google Scholar 

  65. Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143

    Article  Google Scholar 

  66. Banerjee S, Kumar A (2010) Dielectric behavior and charge transport in polyaniline nanofiber reinforced PMMA composites. J Phys Chem Solids 71:381

    Article  CAS  Google Scholar 

  67. Ng HM, Ramesh S, Ramesh K (2015) Exploration on the P (VP-co-VAc) copolymer based gel polymer electrolytes doped with quaternary ammonium iodide salt for DSSC applications: electrochemical behaviors and photovoltaic performances. Org Electron 22:132

    Article  CAS  Google Scholar 

  68. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11

    Article  Google Scholar 

  69. Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112:261

    Article  CAS  Google Scholar 

  70. Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P (ECH-EO). Mater Chem Phys 126:404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank VIT University for providing characterization facility (SEM studies under DST-FIST programme). The authors also thank Central Instrumentation Facility department of Pondicherry University for providing TG/DTA characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shanker Babu.

Additional information

Highlights

• Plasticized PVC-PBMA polymer electrolytes are prepared by solution casting technique.

• Temperature- and frequency-dependent ionic conductivity for plasticized PVC-PBMA blend polymer electrolytes follow the VTF relation and Jonscher’s power law respectively.

• Surface morphology of plasticized polymer electrolytes is analyzed using scanning electron microscope analysis.

• Plasticized PVC-PBMA blend polymer electrolytes have good thermal stability up to 523 K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, R., Babu, R.S., Usha Rani, M. et al. Influence of plasticizer on ionic conductivity of PVC-PBMA polymer electrolytes. Ionics 23, 3097–3109 (2017). https://doi.org/10.1007/s11581-017-2101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2101-2

Keywords

Navigation