Skip to main content
Log in

Electrical studies on ionic liquid-based gel polymer electrolyte for its application in EDLCs

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ionic liquid-based gel polymer electrolyte (GPE) has been synthesized using standard solution cast technique. Different weight percent of ionic liquid, 1-Butyl-3-methylimidazolium chloride (BMIMCl) and liquid electrolyte, ethylene carbonate (EC)–propylene carbonate (PC)–tetra ethyl ammonium tetra fluoro borate (TEABF4) was incorporated in polymer, poly(vinylidene fluoride-co-hexafluoro propylene (PVdF-HFP) to obtain mechanically stable gel polymer electrolyte film (GPE) having maximum conductivity of ~10−3 S cm−1 at room temperature, which is acceptable from device fabrication point of view. Potential window and ionic transference number has been obtained to examine the potential limit and ionic characteristics of optimized GPE system. Temperature dependence behavior of electrical conductivity curve follows Arrhenius nature in the temperature range of 303–373 K. Pattern of dielectric constant and its loss as a function of frequency and temperature have been studied and is being explained on the basis of electrode interfacial polarization effect. Frequency-dependent conductivity spectra obey the Jonscher’s power law. Further, optimized composition of GPE has been tested successfully for its application in supercapacitor fabrication with activated charcoal as an electrode material. Maximum specific capacitance of 118.6 mF cm−2 equivalent to single electrode specific capacitance of 61.7 F g−1 have been observed for the optimized GPE film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. doi:10.1016/S03787753(98)001931

    Article  CAS  Google Scholar 

  2. Groce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39:2187–2194. doi:10.1016/0013 4686(94)E0167X

    Article  Google Scholar 

  3. Pistoia G, Antonini A, Wang G (1996) Impedance study on the reactivity of gel polymer electrolytes towards a lithium electrode. J Power Sources 58:139–144. doi:10.1016/S03787753(96)023828

    Article  CAS  Google Scholar 

  4. Tsunemi K, Ohno H, Tsuchida E (1983a) Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim Acta 28:591–595. doi:10.1016/00134686(83)85049X

    Article  Google Scholar 

  5. Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H (2002) PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ionics 152-153:347–354. doi:10.1016/S01672738(02)003351

    Article  CAS  Google Scholar 

  6. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191. doi:10.1016/S03787753(99)005297

    Article  CAS  Google Scholar 

  7. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634. doi:10.1016/j.jpowsour.2008.10.112

    Article  CAS  Google Scholar 

  8. Brazel CS, Rogers RD (eds) (2005) Ionic liquids in polymer systems. ACS symposium series, vol 913. American Chemical Society, Washington, DC

    Google Scholar 

  9. Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. Wiley Interscience, New Jersey

    Google Scholar 

  10. Webber A, Blomgrem GE (2002) Ionic liquids for lithium-ion and related batteries. In: Schalkwijk WAV, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, pp 185–232

    Chapter  Google Scholar 

  11. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. doi:10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  12. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173. doi:10.1021/ar7000952

    Article  CAS  Google Scholar 

  13. Croce F, Appetechi GB, Mustarelli P, Quartarone E, Tomasi C, Cazzanelli E (1998) Investigation of ion dynamics in LiClO4/EC/PC highly concentrated solutions by ionic conductivity and DSC measurements. Electrochim Acta 43:1441–1446. doi:10.1016/S00134686(97)100810

    Article  CAS  Google Scholar 

  14. Jain A, Tripathi SK, Gupta A, Kumari M (2013) Fabrication and characterization of electrochemicaldouble layer capacitors using ionic liquid-based gel polymer electrolyte with chemically treated activated charcoal. J Solid State Electrochemistry 17:713–726. doi:10.1007/s10008-012-1907-0

    Article  CAS  Google Scholar 

  15. Hu C, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794. doi:10.1016/j.electacta.2007.02.062

    Article  Google Scholar 

  16. Castillo J, Chacón M, Castillo R, Vargas RA, Bueno PR, Varela JA (2009) Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system. Ionics 15:537–544. doi:10.1007/s11581-009-0320-x

    Article  CAS  Google Scholar 

  17. Tsunemi K, Ohno H, Tsuchida E (1983b) A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films. Electrochim Acta 28:833–837. doi:10.1016/00134686(83)85155X

    Article  CAS  Google Scholar 

  18. Dutta P, Biswas S, De SK (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200. doi:10.1016/S00255408(01)008133

    Article  CAS  Google Scholar 

  19. Tripathi SK, Jain A, Gupta A, Mishra M (2012) Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes. J Solid State Electrochem 16:1799–1806. doi:10.1007/s10008-012-1656-0

    Article  CAS  Google Scholar 

  20. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanalytical Chemistry and Interfacial Electrochemistry 74:125–143. doi:10.1016/S00220728(76)80229X

    Article  CAS  Google Scholar 

  21. Ghosh S, Ghosh A (2002) Conductivity relaxation in mixed alkali fluoride glasses. J Phys Condensed Matter 14:2531–2540. doi:10.1088/0953-8984/14/10/304

    CAS  Google Scholar 

  22. Chaabane I, Hlel F, Guidara K (2010) Dielectric spectroscopy study of the new compound [C12H17N2]2CdCl4. Ionics 16:371–377. doi:10.1007/s11581-009-0401-x

    Article  CAS  Google Scholar 

  23. Hodge IM, Ngai KL, Moynihan CT (2005) Comments on the electric modulus function. J Non-Crystalline Solids 351:104–115. doi:10.1016/j.jnoncrysol.2004.07.089

    Article  CAS  Google Scholar 

  24. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Materials Science Engineering:B 85:11–15. doi:10.1016/S09215107(01)005554

    Article  Google Scholar 

  25. Rhaiem AB, Chouaib S, Guidara K (2010) Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7. Ionics 16:455–463. doi:10.1007/s11581-009-0411-8

    Article  Google Scholar 

  26. Agrawal SL, Singh M, Tripathi M, Dwivedi MM, Pandey K (2009) Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. J Mater Sci 44:6060–6068. doi:10.1007/s10853-009-3833-9

    Article  CAS  Google Scholar 

  27. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6. J Mater Sci Eng B 34:18–26. doi:10.1016/0921-5107(95)012192

    Article  Google Scholar 

  28. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technical applications. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  29. Chowdhury NA, Shukla AK, Sampath S, Pitchumani S (2006) Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. J Electrochem Soc 153:A614–A620. doi:10.1149/1.2164810

    Article  Google Scholar 

  30. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1997) Polymer electrolyte based solid state redox supercapacitors with poly(3-methyl thiophene) and polypyrrole conducting polymer electrodes. Ionics 3:177–183. doi:10.1007/BF02375614

    Article  CAS  Google Scholar 

  31. Xiao QC, Liu HY, Xia QL, Xiao QZ, Lei GT, Li ZH (2014) Nanocomposite polymer electrolyte with high-temperature stability for rechargeable lithium batteries. Arab J Sci Eng 2014(39):6651–6665. doi:10.1007/s13369-014-1180-x

    Article  Google Scholar 

  32. Ramasamy C, Palma J, Anderson M (2014) A 3-V electrochemical capacitor study based on a magnesium polymer gel electrolyte by three different carbon materials. J Solid State Electrochem. doi:10.1007/s10008-014-2557-1

    Google Scholar 

  33. Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Effect of ZnO filler concentration on the conductivity,structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application. Ionics 19:1835–1842. doi:10.1007/s11581-013-0922-1

    Article  CAS  Google Scholar 

  34. Teoh KH, Lim C-S, Liew C-W, Ramesh S, Ramesh S (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 21:2061–2068. doi:10.1007/s11581-014-1359-x

    Article  CAS  Google Scholar 

  35. Baskaran B, Selvasekarapandian, Hirankumar G, Bhuvaneswari MS (2004) Dielectric and conductivity relaxations in PVAc based polymer electrolytes. Ionics 10:129. doi:10.1007/BF02410321

    Article  CAS  Google Scholar 

  36. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16:317–321. doi:10.1007/s11581-010-0420-7

    Article  CAS  Google Scholar 

  37. Ramakumar S, Satyanarayana L, Sunkara VM, Ramaswamy M (2013) Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. PhysChemChemPhys 15:11327–11338. doi:10.1039/C3CP50991E

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Jaypee University of Engineering and Technology Guna, Madhya Pradesh, India, for providing experimental facilities in performing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.K. Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, M., Tripathi, S. Electrical studies on ionic liquid-based gel polymer electrolyte for its application in EDLCs. Ionics 23, 2735–2746 (2017). https://doi.org/10.1007/s11581-017-2051-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2051-8

Keywords

Navigation