Skip to main content
Log in

Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

At present, a lot of attention has been paid to the reasonable design and synthesis of materials with core shell structure for high-performance supercapacitors. Herein, the Co3O4@MnO2 core shell arrays on nickel foam are successfully synthesized via a facile and effective hydrothermal method followed with annealing process. The sample was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrochemical performance of the Co3O4@MnO2 material was studied using cyclic voltammetry, charge/discharge cycling, and electrochemical impedance measurements in 6 mol L−1 KOH aqueous electrolyte. The results indicated that the Co3O4@MnO2 material presented excellent electrochemical performance in terms of specific capacitance, cyclic stability, and charge/discharge stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang B, Liu T, Liu A, Liu G, Wang L, Gao T, Wang D, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426

    Article  Google Scholar 

  2. Wang B, Abdulla WA, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875

    Article  CAS  Google Scholar 

  3. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co 3 O 4 @MnO 2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  4. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

    Article  CAS  Google Scholar 

  5. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  6. Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  7. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  8. Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220

    Article  CAS  Google Scholar 

  9. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795

    Article  CAS  Google Scholar 

  10. Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  11. Cai D, Wang D, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2014) Three-dimensional Co(3)O(4)@NiMoO(4) core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces 6:5050–5055

    Article  CAS  Google Scholar 

  12. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  13. Yang W, Yang W, Ding F, Sang L, Ma Z, Shao G (2016) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111:419–427

    Article  Google Scholar 

  14. Du J, Shao G, Qin X, Wang G, Zhang Y, Ma Z (2012) High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Mater Lett 84:13–15

    Article  CAS  Google Scholar 

  15. Wang G, Wang W, Zhao Y, Shao G, Liu T, Ma Z (2013) Pulsed electrodeposition of mesoporous cobalt-doped manganese dioxide as supercapacitor electrode material. Ionics 20:243–249

    Article  Google Scholar 

  16. Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857

    Article  CAS  Google Scholar 

  17. Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216

    Article  CAS  Google Scholar 

  18. Meng G, Yang Q, Wu X, Wan P, Li Y, Lei X, Sun X, Liu J (2016) Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy. doi:10.1016/j.nanoen.2016.09.012

    Google Scholar 

  19. Meng T, Xu Q-Q, Wang Z-H, Li Y-T, Gao Z-M, Xing X-Y, Ren T-Z (2015) Co3O4 nanorods with self-assembled nanoparticles in queue for supercapacitor. Electrochim Acta 180:104–111

    Article  CAS  Google Scholar 

  20. Elshahawy AM, Ho KH, Hu Y, Fan Z, Hsu YWB, Guan C, Ke Q, Wang J (2016) Microwave–assisted hydrothermal synthesis of nanocrystal β-Ni(OH)2 for supercapacitor applications. CrystEngComm 18:3256–3264

    Article  CAS  Google Scholar 

  21. Li Q, Ni H, Cai Y, Cai X, Liu Y, Chen G, Fan L-Z, Wang Y (2013) Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets. Mater Res Bull 48:3518–3526

    Article  CAS  Google Scholar 

  22. Chang J-K, Wu C-M, Sun IW (2010) Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J Mater Chem 20:3729

    Article  CAS  Google Scholar 

  23. Kuang M, Li TT, Chen H, Zhang SM, Zhang LL, Zhang YX (2015) Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotechnology 26:304002

    Article  Google Scholar 

  24. H. Chen, M. Zhou, T. Wang, F. Li, Y.X. Zhang (2016), Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors. J of Mater Chem A

  25. Memon J, Sun J, Meng D, Ouyang W, Memon MA, Huang Y, Yan S, Geng J (2014) Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. J Mater Chem A 2:5060

    Article  CAS  Google Scholar 

  26. Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595

    Article  CAS  Google Scholar 

  27. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  28. Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y (2012) Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater Chem Phys 132:596–600

    Article  CAS  Google Scholar 

  29. Chen H, Hu L, Yan Y, Che R, Chen M, Wu L (2013) One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv Energy Mater 3:1636–1646

    Article  CAS  Google Scholar 

  30. Qiu K, Lu Y, Zhang D, Cheng J, Yan H, Xu J, Liu X, Kim J-K, Luo Y (2015) Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11:687–696

    Article  CAS  Google Scholar 

  31. Cui C, Xu J, Wang L, Guo D, Mao M, Ma J, Wang T (2016) Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl Mater Interfaces 8:8568–8575

    Article  CAS  Google Scholar 

  32. Qing X, Liu S, Huang K, Lv K, Yang Y, Lu Z, Fang D, Liang X (2011) Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim Acta 56:4985–4991

    Article  CAS  Google Scholar 

  33. Xia X-h, Tu J-p, Mai Y-j, Wang X-l, Gu C-d, Zhao X-b (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319

    Article  CAS  Google Scholar 

  34. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214

    Article  CAS  Google Scholar 

  35. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809

    Article  CAS  Google Scholar 

  36. Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger JC, Penner RM (2011) Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. ACS Nano 5:8275–8287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51674221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Shao.

Additional information

Mengya Feng and Guowei Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Zhang, G., Du, Q. et al. Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. Ionics 23, 1637–1643 (2017). https://doi.org/10.1007/s11581-017-2013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2013-1

Keywords

Navigation