Skip to main content
Log in

Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the comparative study of TiO2 nanoflower (NF) and TiO2-ZnO composite NF in terms of properties and dye-sensitized solar cell performances. TiO2 NF has been constructed by using the simple liquid phase deposition (LPD) method while TiO2-ZnO composite NF was prepared by using dip-coating method in which the as-prepared TiO2 NF was immersed into ZnO growth solution. The power conversion efficiency of the DSSC utilizingTiO2-ZnO composite NF is higher (0.62 ± 0.02%) compared to TiO2 NF (0.17 ± 0.10%) due to higher photon absorption, dye loading, R cr, and longer electron life time than those of TiO2 NF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huo J, Hu Y, Jiang H, Huang W, Li C (2014) SnO2 nanorod@TiO2 composite material for dye-sensitized solar cells. J Mater Chem A 2:8266

    Article  CAS  Google Scholar 

  2. Desai UV, Xu C, Wu J, Gao D (2013) Composite TiO2-SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117:3232–3239

    Article  CAS  Google Scholar 

  3. Ye M, Zheng D, Lv M, Chen C, Lin C, Lin Z (2013) Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Adv Mater 25:3039–3044

    Article  CAS  Google Scholar 

  4. Ye M, Xin X, Lin C, Lin Z (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11:3214–3220

    Article  CAS  Google Scholar 

  5. Jimenez-Villar E, Mestre V, de Oliveira PC, de Sá GF (2013) Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation. Nanoscale 5:12512–12517

    Article  CAS  Google Scholar 

  6. Su X, Zhao J, Li Y, Zhu Y, Ma X, Sun F, Wang Z (2009) Solution synthesis of Cu2O/TiO2 core-shell nanocomposites, colloids surfaces a physicochem. Eng Asp 349:151–155

    Article  CAS  Google Scholar 

  7. Hao Y, Cao Y, Sun B, Li Y, Zhang Y, Xu D (2012) A novel semiconductor-sensitized solar cell based on P3HT@CdS@TiO2 core-shell nanotube array. Sol Energy Mater Sol Cells 101:107–113

    Article  CAS  Google Scholar 

  8. Park K, Zhang Q, Garcia BB, Cao G (2011) Effect of annealing temperature on TiO2-ZnO Core-Shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C 115:4927–4934

    Article  CAS  Google Scholar 

  9. Ji IA, Park M, Jung J, Choi MJ, Lee Y, Lee J, Bang JH (2012) One-dimensional Core/Shell structured TiO2/ZnO heterojunction for improved Photoelectrochemical performance. Bull Kor Chem Soc 33:2200–2206

    Article  CAS  Google Scholar 

  10. Karunakaran C, Vinayagamoorthy P, Jayabharathi J (2013) Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized Mn-doped TiO2/ZnO core–shell nanoparticles. Superlattice Microst 64:569–580

    Article  CAS  Google Scholar 

  11. Park JY, Choi S-W, Lee J-W, Lee C, Kim SS (2009) Synthesis and gas sensing properties of TiO2-ZnO Core-Shell nanofibers. J Am Ceram Soc 92:2551–2554

    Article  CAS  Google Scholar 

  12. Agbo PE (2012) Temperature effect on the thickness and optical properties of Core-Shell TiO2/ZnO crystalline thin films. Adv Appl Sci Res 3:599–604

    CAS  Google Scholar 

  13. Al-juaid F, Merazga A (2013) Increasing dye-sensitized solar cell efficiency by ZnO spin-coating of the TiO2 electrode :effect of ZnO amount. Energy and Power Engineering 5:591–595

    Article  Google Scholar 

  14. Reinosa J, Leret P, Lvarez-Docio CM, Del Campo A, Fernandez JF (2016) Enhancement of UV absorption behavior in ZnO-TiO2 composites. Bol la Soc Esp Ceram Vidr 55:55–62

    Article  Google Scholar 

  15. Rajkumar N, Kanmani SS, Ramachandran K (2011) Performance of dye-sensitized solar cell based on TiO2-ZnO nanocomposites. Adv Sci Lett 4:627–633

    Article  CAS  Google Scholar 

  16. Martinson ABF, Góes MS, Fabregat-Santiago F, Bisquert J, Pellin MJ, Hupp JT (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem A 113:4015–4021

    Article  CAS  Google Scholar 

  17. Thapa A, Zai J, Elbohy H, Poudel P, Adhikari N, Qian X, Qiao Q (2014) TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res 7:1154–1163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, Technology and Innovation Malaysia and The National University of Malaysia (UKM) under the research grant of FRGS/2/2013/SG02/UKM/02/5, 03-01-02-SF0836 and FRGS/2/2013/SG02/UKM/02/8, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Y. A. Rahman or A. A. Umar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsuri, S.A.M., Rahman, M.Y.A. & Umar, A.A. Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells. Ionics 23, 1897–1902 (2017). https://doi.org/10.1007/s11581-017-2010-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2010-4

Keywords

Navigation