Skip to main content
Log in

N-doped graphene/Bi nanocomposite with excellent electrochemical properties for lithium–ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

N-doped graphene/Bi nanocomposite was prepared via a two-step method, combining the gas/liquid interface reaction with the rapid heat treatment method. The as-prepared sample was characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and elemental analyzer. The XRD, FESEM, XPS, and elemental analysis results confirm the successful synthesis of N-doped graphene/Bi nanocomposite. As a result, the prepared N-doped graphene/Bi nanocomposite as an anode material for lithium-ion batteries delivers excellent electrochemical performance. A high lithium storage capacity of about 522 mAh g−1 in the voltage range of 0.01–3.5 V is obtained. After 50 cycles at different current densities from 50 to 1000 mA g−1, the specific capacity can still remain 386 mAh g−1. Even at the high current density of 1000 mA g−1, the N-doped graphene/Bi nanocomposite can still deliver a specific capacity of 218 mAh g−1. The excellent electrochemical performance of the N-doped graphene/Bi nanocomposite is supposed to benefit from the high electronic conductivity of nitrogen-doped graphene and the synergistic effect of bismuth nanoparticles and nitrogen-doped graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45:1759–1769

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  4. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  5. Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J (2014) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157

    Article  CAS  Google Scholar 

  6. Liu LH, Xie F, Jing L, Zhao TK, Li TH, Choi BG (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11–35

    Article  CAS  Google Scholar 

  7. Lian PC, Wang JY, Cai DD, Ding LX, Jia QM, Wang HH (2014) Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim Acta 116:103–110

    Article  CAS  Google Scholar 

  8. Lin Z, Lin G, Kang F, Wang M, Shen W, Huang Z (2010) Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. J Power Sources 195:1216–1220

    Article  Google Scholar 

  9. Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z (2012) A 3d porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J Mater Chem 22:7724–7730

    Article  CAS  Google Scholar 

  10. Xue L, Xu G, Ying L, Li S, Fu K, Quan S, Zhang X (2013) Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5:21–25

    Article  CAS  Google Scholar 

  11. Xue DJ, Xin S, Yan Y, Jiang KC, Yin YX, Guo YG, Wan LJ (2012) Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J Am Chem Soc 134:2512–2515

    Article  CAS  Google Scholar 

  12. Yoon S, Park CM, Sohn HJ (2008) Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem Solid-State Lett 11:A42–A45

    Article  CAS  Google Scholar 

  13. Chang CC (2008) Sb-coated mesophase graphite powder as anode material for lithium-ion batteries. J Power Sources 175:874–880

    Article  CAS  Google Scholar 

  14. Ji HS, Park CM (2013) Amorphized Sb-based composite for high-performance Li-ion battery anodes. J Electroanal Chem 700:12–16

    Article  Google Scholar 

  15. Finke A, Poizot P, Guéry C, Dupont LC, Taberna PL, Simon P, Tarascon JM (2008) Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem Solid-State Lett 11:E5

    Article  CAS  Google Scholar 

  16. Park CM, Yoon S, Lee SI, Sohn HJ (2009) Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J Power Sources 186:206–210

    Article  CAS  Google Scholar 

  17. Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G (2014) Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 6:13236–13241

    Article  CAS  Google Scholar 

  18. Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14:255–260

    Article  CAS  Google Scholar 

  19. Su D, Dou SX, Wang GX (2015) Bismuth: a new anode for the Na-ion battery. Nano Energy 12:88–95

    Article  CAS  Google Scholar 

  20. Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chemistry 22:2333–2338

    Article  CAS  Google Scholar 

  21. Crosnier O, Devaux X, Brousse T, Fragnaud P, Schleich DM (2001) Influence of particle size and matrix in “metal” anodes for Li-ion cells. J Power Sources 97:188–190

    Article  Google Scholar 

  22. Liu YX, Si L, Zhou XS, Liu X, Xu Y, Bao JC, Dai ZH (2014) A selenium-confined microporous carbon cathode for ultrastable lithium–selenium batteries. J Mater Chem A 2:17735–17739

    Article  CAS  Google Scholar 

  23. Wang JP, Wang CY, Zhu YM, Wu NN, Tian WH (2015) Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries. Ionics 21:579–585

    Article  Google Scholar 

  24. Dong YF, Liu SH, Liu Y, Tang YC, Yang T, Wang XZ, Wang ZY, Zhao ZB, Qiu JS (2016) Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. J Mater Chem A 4:17718–17725

    Article  CAS  Google Scholar 

  25. Dong YF, Yu ML, Wang ZY, Liu Y, Wang XZ, Zhao ZB, Qiu JS (2016) A top–down strategy toward 3d carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26:7590–7598

    Article  CAS  Google Scholar 

  26. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  27. Rafiee MA (2011) Graphene. Dissertations & Theses - Gradworks 442:282–286

    Google Scholar 

  28. Beck FR, Epur R, Hong D, Manivannan A, Kumta PN (2014) Microwave derived facile approach to Sn/graphene composite anodes for lithium-ion batteries. Electrochim Acta 127:299–306

    Article  CAS  Google Scholar 

  29. Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  30. Du YJ, Zhu GN, Wang K, Wang YG, Wang CX, Xia YY (2013) Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. Electrochem Commun 36:107–110

    Article  CAS  Google Scholar 

  31. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539

    Article  CAS  Google Scholar 

  32. Liu X, Du YC, Hu LY, Zhou XS, Li YF, Dai ZH, Bao JC (2015) Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance. J Phys Chem C 119:5848–5854

    Article  CAS  Google Scholar 

  33. Wang HT, He DW, Wang YS, Wu HP, Wang JG (2012) SnO2/graphene nanocomposite as an enhanced anode material for lithium ion batteries. Adv Mater Res 465:108–111

    Article  CAS  Google Scholar 

  34. Fu CJ, Li S, Wang Q (2015) High reversible capacity of nitrogen-doped graphene as an anode material for lithium-ion batteries. Adv Mater Res 1070-1072:459–464

    Article  CAS  Google Scholar 

  35. Li XF, Geng DS, Zhang Y, Meng XB, Li RY, Sun XL (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825

    Article  CAS  Google Scholar 

  36. Liu XW, Wu Y, Yang ZZ, Pan FS, Zhong XW, Wang JQ, Gu L, Yu Y (2015) Nitrogen-doped 3d macroporous graphene frameworks as anode for high performance lithium-ion batteries. J Power Sources 293:799–805

    Article  CAS  Google Scholar 

  37. Xu Y, Zhu XS, Zhou XS, Liu X, Liu YX, Dai ZH, Bao JC (2014) Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries. J Phys Chem C 118:28502–28508

    Article  CAS  Google Scholar 

  38. Park SK, Jin AH, Yu SH, Ha J, Jang B, Bong SY, Woo S, Sung YE, Piao YZ (2013) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459

    Article  Google Scholar 

  39. Wu ZS, Ren WC, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  40. Cai DD, Wang SQ, Lian PC, Zhu XF, Li DD, Yang WS, Wang HH (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  42. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  43. Tan CH, Cao J, Khattak AM, Cai FP, Jiang B, Yang G, Hu SQ (2014) High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources 270:28–33

    Article  CAS  Google Scholar 

  44. Wang XM, Nishina T, Uchida I (2002) Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte. J Power Sources 104:90–96

    Article  CAS  Google Scholar 

  45. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:4384–4384

    Article  CAS  Google Scholar 

  46. Li YL, Trujillo MA, Fu EG, Patterson B, Fei L, Xu Y, Deng SG, Smirnov S, Luo HM (2013) Bismuth oxide: a new lithium-ion battery anode. J Mater Chem A 1:12123–12127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (No. 21406098), Natural Science Foundation of Yunnan Province (No. 2016FB018), and the Project of Youth Academic Technology Personnel of Yunnan Province (No. 2015HB022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peichao Lian.

Additional information

Highlights

• The N-doped graphene/Bi nanocomposite as an anode material for lithium-ion batteries was firstly reported.

• The N-doped graphene/Bi nanocomposite delivers a high lithium storage capacity of about 522 mAh g−1 in the voltage range of 0.01–3.5 V.

• The N-doped graphene/Bi nanocomposite exhibits excellent cyclability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Q., Wang, B. et al. N-doped graphene/Bi nanocomposite with excellent electrochemical properties for lithium–ion batteries. Ionics 23, 1407–1415 (2017). https://doi.org/10.1007/s11581-017-1975-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1975-3

Keywords

Navigation