Skip to main content
Log in

Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The NASICON series, with formula Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1), has been prepared by solid-state reaction and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR) and impedance spectroscopy (IS). XRD patterns of samples indicated the formation of single phases with rhombohedral structure (space group R-3c). The Rietveld analysis of XRD patterns was performed to deduce location of Li and Ba ions. FTIR, Raman, and NMR techniques showed the only presence of isolated PO4 groups in analyzed phosphates. 31P MAS-NMR spectra were used to investigate Li and Ba distribution and 7Li MAS-NMR spectra to discriminated Li ions with different mobility in conduction paths. A maximum total conductivity of 2.5 × 10−7 S cm−1 and a minimum activation energy of 0.47 eV were obtained at room temperature for Ba0.3Li0.4Ti2(PO4)3 (x = 0.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Hong HY, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mat Res Bull 11:203–220

    Article  CAS  Google Scholar 

  2. Maruyama T, Saito Y, Matsumoto Y, Yano Y (1985) Potentiometric sensor for sulfur oxides using NASICON as a solid electrolyte. Solid State Ionics 17:281–286

    Article  CAS  Google Scholar 

  3. Obata K, Matsushima S (2009) Relationship between aging time and EMF change of potentiometric CO2 device using Na1+xZr2SixP3-xO12 (0 < x < 3). Sensors Actuators B Chem 139:435–439

    Article  CAS  Google Scholar 

  4. Barré M, Crosnier-López MP, Le Berre F, Suard E, Fourquet JL (2007) Synthesis and structural study of a new NASICON-type solid solution: Li1+xLax/3Zr2(PO4)3. J Solid State Chem 188:1011–1019

    Article  Google Scholar 

  5. Nagata K, Nanno T (2007) All solid battery with phosphate compounds made through sintering process. J Power Sources 174:832–837

    Article  CAS  Google Scholar 

  6. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916

    Article  CAS  Google Scholar 

  7. Cretin M, Fabry P (1997) Detection and selectivity properties of Li+ − ion-selective electrodes based on NASICON-type ceramics. Anal Chim Acta 354:291–299

    Article  CAS  Google Scholar 

  8. Taylor BE, English AD, Berzins T (1977) New solid ionic conductors. Mat Res Bull 12:171–181

    Article  CAS  Google Scholar 

  9. Sobha KC, Rao KJ (1996) Investigation of phosphate glasses with the general formula AxByP3O12 where A = Li, Na or K and B = Fe, Ga, Ti, Ge, V or Nb. J Non-Cryst Solids 201:52–65

    Article  CAS  Google Scholar 

  10. Morin E, Angenault J, Couturier JC, Quarton M, He H, Klinowski J (1997) Phase transition and crystal structures of LiSn2(PO4)3. Eur J Solid State Inorg Chem 34:947–958

    CAS  Google Scholar 

  11. Catti M, Stramare S, Ibberson R (1999) Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic alpha α’-LiZr2(PO4)3. Solid State Ionics 123:173–180

    Article  CAS  Google Scholar 

  12. Losilla ER, Aranda MAG, Martinez-Lara M, Bruque S (1997) Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)3: crystal structures from neutron powder diffraction. Chem Mat 9:1678–1685

    Article  CAS  Google Scholar 

  13. Maldonado-Manso P, Losilla ER, Lara MM, Aranda MAG, Bruque S, Mouahid FE, Zahir M (2003) High lithium ionic conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON series. Chem Mat 15:1879–1885

    Article  CAS  Google Scholar 

  14. Arbi K, Tabellout M, Sanz J (2010) NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2−xZrx(PO4)3 (0 ≤ x ≤ 2). Solid State Ionics 180:1613–1619

    Article  CAS  Google Scholar 

  15. Catti M, Comotti A, Di Blas S (2003) High-temperature lithium mobility in α-LiZr2(PO4)3 NASICON by neutron diffraction. Chem Mat 15:1628–1632

    Article  CAS  Google Scholar 

  16. Bogusz W, Dygas JR, Krok F, Kezionis A, Sobiestianskas R, Kazakevicius E, Orliukas A (2001) Electrical conductivity dispersion in Co-doped NASICON samples. Phys Status Solidi (a) 183:323–330

    Article  CAS  Google Scholar 

  17. Nunotani N, Ohsaka T, Tamura S, Imanaka N (2012) Tetravalent Sn4+ ion conductor based on NASICON-type phosphate. ECS Electrochem Lett 1:A66–A69

    Article  CAS  Google Scholar 

  18. Kuwano J, Sato N, Kato M, Takano K (1994) Ionic conductivity of LiM2(PO4)3 (M = Ti, Zr, Hf) and related compositions. Solid State Ionics 70:332–336

    Article  Google Scholar 

  19. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027

    Article  CAS  Google Scholar 

  20. Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 < x < 0.7. A parallel NMR and electric impedance study. Chem Mat 14:1091–1097

    Article  CAS  Google Scholar 

  21. Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammera GJ, Fleig J (2016) A microcontact impedance study on NASICON type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J Mat Chem A 4:1506–1513

    Article  CAS  Google Scholar 

  22. Šalkus T, Barre M, Kežionis A, Kazakevičius E, Bohnke O, Selskienė A, Orliukas AF (2012) Ionic conductivity of Li1.3Al0.3-xScxTi1.7(PO4)3 (x = 0, 0.1, 0.15, 0.2, 0.3) solid electrolytes prepared by Pechini process. Solid State Ionics 225:615–619

    Article  Google Scholar 

  23. Huang CY, Agrawal DK, Mc Kinstry HA (1995) Thermal expansion behaviour of M’Ti2P3O12 (M’ = Li, Na, K, Rb) and M”Ti4P6O24 (M” = Mg, Ca, Sr, Ba) compounds. J Mat Sci 30:3509–3514

  24. Fu J (2013) Photocatalytic activity of glass ceramics containing NASICON-type crystals. Mat Res Bull 48:70–73

    Article  CAS  Google Scholar 

  25. David AW, Philip L, Smith RI (1999) Powder neutron diffraction studies of three low thermal expansion phases in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, Ba0.5Ti2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3. J Mat Chem 9:2631–2636

    Article  Google Scholar 

  26. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination neutron powder diffraction. Physica B: Cond Mat 192:55–69

    Article  CAS  Google Scholar 

  27. D. Johnson, ZView2 2.8, 2003

  28. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:757–767

    Article  Google Scholar 

  29. Tarte P, Rulmont A, Merckaert-Ansay C (1986) Vibrational spectrum of NASICON-like, rhombohedral orthophosphates MIMIV 2(PO4)3. Spectrochim Acta 42:1009–1016

    Article  Google Scholar 

  30. Buvaneswari G, Varadaraju UV (1999) Synthesis of new network phosphates with NZP structure. J Solid State Chem 145:227–234

    Article  CAS  Google Scholar 

  31. Borovikova EY, Kurazhkovskaya VS, Bykov DM, Orlova AI (2010) Infrared spectroscopy and the structure of La0.33Zr2(PO4)3-Yb0.33Zr2(PO4)3 solid solutions. J Struc Chem 51:40–44

    Article  CAS  Google Scholar 

  32. Chourasia R, Shrivastava OP (2011) Synthesis and crystal structure of nanocrystalline phase: Ca1-xMxZr4P6O24 (M = Sr, Ba and x = 0.0-1.0). Solid State Sci 13:444–454

    Article  Google Scholar 

  33. Bamberger CE, Begun GM, Cavin OB (1988) Syntesis and characterization of sodium–titanium phosphates, Na4TiO(PO4)2, Na(TiO)PO4 and NaTi2(PO4)3. J Solid State Chem 73:317–324

    Article  CAS  Google Scholar 

  34. Kolev N, Bontchev RP, Jacobson AJ, Popov VN, Hadjiev VG, Litvinchuk AP, Iliev MN (2002) Raman spectroscopy of CaCu3Ti4O12. Phys Rev B 66:132102–132104

    Article  Google Scholar 

  35. Hardcastle FD, Wachs IE (1990) Determination of molybdenum–oxygen bond distances and bond orders by Raman spectroscopy. J Raman Spectrosc 21:683–691

    Article  CAS  Google Scholar 

  36. Pérez-Estébanez M, Isasi-Marín J, Díaz-Guerra C, Rivera-Calzada A, León C, Santamaría J (2013) Influence of chromium content on the optical and electrical properties of Li1+xCrxTi2-x(PO4)3. Solid State Ionics 241:36–45

    Article  Google Scholar 

  37. Cretin M, Fabry P, Abello L (1995) Study of Li1+xAlxTi2-x(PO4)3 for Li+ potentiometric sensors. J Eur Ceram Soc 15:1149–1156

    Article  CAS  Google Scholar 

  38. Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based NASICON Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218

    Article  CAS  Google Scholar 

  39. Le Meins JM, Bohnke O, Courbion G (1998) Ionic conductivity of crystalline and amorphous Na3Al2(PO4)2F3. Solid State Ionics 111:67–75

    Article  CAS  Google Scholar 

  40. Paris MA, Martinez-Juàrez A, Rojo JM, Sanz J (1996) Lithium mobility in the NASICON-type compound LiTi2(PO4)3 by nuclear magnetic resonance and impedance spectroscopies. J Phys: Condens Mat 8:5355–5366

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Panczer, Professor at the University Claude Bernard Lyon I, for his invaluable assistance in Raman spectra acquisition. R. Kahlaoui wishes to acknowledge the financial support of Tunisian Minister of Higher Education and Scientific Research. This work has been founded by Spanish projects MINECO MAT2013-46452-C4 and MATERYENER3-CM (S20132/MIT-2753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kahlaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahlaoui, R., Arbi, K., Jimenez, R. et al. Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials. Ionics 23, 837–846 (2017). https://doi.org/10.1007/s11581-016-1898-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1898-4

Keywords

Navigation