Skip to main content
Log in

A comprehensive review on recent material development of passive direct methanol fuel cell

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Direct methanol fuel cells (DMFCs) within all types of fuel cells are the most viable alternative to lithium-ion batteries in the portable application and recently attracted much attention. This study reviews on passive DMFC material development with emphasis on to the performance activity, cost, durability and stability aspect. This paper has reported the basic desirable characteristics of each component with their material development. This paper has reviewed all possible materials of passive DMFC component, which can make the passive DMFC compact and feasible energy source in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lamy C, Lima A, Lerhum V, Delime F, Coutanceau C, Jean-MichelLe  (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). Journal power source 105:283–296

    Article  CAS  Google Scholar 

  2. Zhao TS, Chen R, Yang W, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202

    Article  CAS  Google Scholar 

  3. Verma LK (2000) Studies on methanol fuel cell. J Power Sources 86:464–468

    Article  CAS  Google Scholar 

  4. Liu JG, Zhao TS, Chen R, Wong CW (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7:288–294

    Article  CAS  Google Scholar 

  5. Faghri A, Guo Z (2008) An innovative passive DMFC technology. Appl Therm Eng 28:1614–1622

    Article  CAS  Google Scholar 

  6. Gholami O, Imen SJ, Shakeri M (2013) Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell. Int J Hydrog Energy 38:3395–3400

    Article  CAS  Google Scholar 

  7. Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrog Energy 35:2160–2175

    Article  CAS  Google Scholar 

  8. Chiu K-F, Chen Y-R, Lin HC, Ho WH (2010) PTFE coated Nafion proton conducting membranes for direct methanol fuel cells. Surface & Coatings Technology 205:1647–1650

    Article  CAS  Google Scholar 

  9. Tian AH, Kim JY, Shi JY, Lee K, Kim K (2009) Surface-modified Nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications. J Phys Chem Solids 70:1207–1212

    Article  CAS  Google Scholar 

  10. Lin Y, Li H, Liu CP, Xing W, Ji XL (2008) Surface-modified Nafion membranes with mesoporous SiO2 layers via a facile dipcoating approach for direct methanol fuel cells. J Power Sources 185:904–9048

    Article  CAS  Google Scholar 

  11. Lee W, Kim H, Kim TK, Chang H (2007) Nafion based organic/ inorganic composite membrane for air-breathing direct methanol fuel cells. J Membr Sci 292:29–34

    Article  CAS  Google Scholar 

  12. Rhee CH, Kim HK, Chang H, Lee JS (2005) Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cell. Chem Mater 17:1691–1697

    Article  CAS  Google Scholar 

  13. Kim HK, Oh JM, Kim JH, Chang H (2006) Membrane electrode assembly for passive direct methanol fuel cells. J Power Sources 162:497–501

    Article  CAS  Google Scholar 

  14. Holmberg BA, Wang X, Yan Y (2008) Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals. J Membr Sci 320:86–92

    Article  CAS  Google Scholar 

  15. Li X, Roberts EPL, Holmes SM, Zholobenko V (2008) Functionalized zeolite A–Nafion composite membranes for direct methanol fuel cells. Solid State Ionics 178:1248–1255

    Article  CAS  Google Scholar 

  16. Wycisk R, Chisholm J, Lee J, Lin J, Pintaura PN (2006) Direct methnaol fuel cell membrane from Nafion polybenzimidazole blends. J Power Sources 163:9–17

    Article  CAS  Google Scholar 

  17. Ainla A, Brandell D (2007) Nafion-PBI composite membranes for DMFC application. Solid State Ionic 178:581–585

    Article  CAS  Google Scholar 

  18. Hou HY, Sun GQ, Wu ZM, Jin W, Xin Q (2008) Zirconium phosphate/ Nafion115 composite membrane for high-concentration DMFC. Int J Hydrog Energy 33:3402–3409

    Article  CAS  Google Scholar 

  19. Arbizzani C, Donnadio A, Pica M, Sganapp M, Varzi A, Casciol M, Mastragostino M (2010) Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells. J Power Sources 195:7751–7756

    Article  CAS  Google Scholar 

  20. Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2011) A novel hybrid Nafion PBI-ZP membrane for direct methanol fuel cells. Int J Hydrog Energy 36:14668–14677

    Article  CAS  Google Scholar 

  21. Chien HC, Tsai LD, Huang CP, Kang C-Y, Lin JN, Chang FC (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801

    Article  CAS  Google Scholar 

  22. Molla S, Compan V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708

    Article  CAS  Google Scholar 

  23. Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, Chuang CY, Ma CCM (2007) Sol–gel derived sulfonated-silica/Nafion® composite membrane for direct methanol fuel cell. J Power Sources 173:36–44

    Article  CAS  Google Scholar 

  24. Zhai Y, Zhang H, Xing D (2007) A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cell. J Power Sources 169:259–264

    Article  CAS  Google Scholar 

  25. Ma CM, Hsiao Y, Lin Y, Yen C, Liao S, Weng C, Yen M, Hsiao M, Weng F (2008) Effects and properties of various molecular weights of poly (propylene oxide) oligomers/Nafion® acid–base blend membranes for direct methanol fuel cells. J Power Sources 185:846–852

    Article  CAS  Google Scholar 

  26. Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44

    Article  CAS  Google Scholar 

  27. Rambabu G, Bhat SD (2014) Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: a comparative study in DMFCs. Chem Eng J 243:517–525

    Article  CAS  Google Scholar 

  28. Higa M, Hatemura K, Sugita M, Maesowa S, Nishimura M, Endo N (2012) Performance of passive direct methanol fuel cell with poly (vinyl alcohol)-based polymer electrolyte membranes. Int J Hydrog Energy 37:6292–6301

    Article  CAS  Google Scholar 

  29. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J Membr Sci 229:95–106

    Article  CAS  Google Scholar 

  30. Benavente J, Zhang X, Garcia VR (2005) Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements. J Colloid Interface Sci 285:273–280

    Article  CAS  Google Scholar 

  31. Lufrano F, Baglio V, Staiti P, Stassi A, Arico AS, Antonucci V (2010) Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack. J Power Sources 195:7727–7733

    Article  CAS  Google Scholar 

  32. Di Vona ML, Licoccia S, Knauth P (2008) Organic–inorganic hybrid membranes based on sulfonated polyaryl–ether–ketones: correlation between water uptake and electrical conductivity. Solid State Ionics 179:1161–1165

    Article  CAS  Google Scholar 

  33. Kim DS, Liu B, Guiver MD (2006) Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cellapplication. Polymer 47:7871–7880

    Article  CAS  Google Scholar 

  34. Bai ZW, Price GE, Yoonessi M, Juhl SB, Durstock MF, Dang TD (2007) Proton exchange membranes based on sulfonated polyarylenethioether sulfone and sulfonated polybenzimidazole for fuel cell applications. J Membr Sci 305:69–76

    Article  CAS  Google Scholar 

  35. Helen M, Viswanathan B, Srinivasa Murthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J Power Sources 163:433–439

    Article  CAS  Google Scholar 

  36. Wang JT, Zhang H, Jiang ZY, Yang XL, Xiao L (2009) Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic sub microspheres into polymer matrix. J Power Sources 188:64–74

    Article  CAS  Google Scholar 

  37. Fu RQ, Woo JJ, Seo SJ, Lee JS, Moon SH (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466

    Article  CAS  Google Scholar 

  38. Baglio V, Stassi A, Modica E, Antonucci V, Arico AS, Caracino P, Ballabio O, Colombo M, Kopnin E (2010) Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane. Electrochim Acta 55:6022–6027

    Article  CAS  Google Scholar 

  39. Mehata V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53

    Article  CAS  Google Scholar 

  40. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238

    Article  CAS  Google Scholar 

  41. Tsai L, Chien H, Huang W, Huang C, Kang C, Lin J, Chang F (2013) Novel bilayer composite membrane for passive direct methanol fuel cells with pure methanol. Int J Electrochem Sci 8:9704–9713

    CAS  Google Scholar 

  42. Pasupathi SK, Ji S, Bladergroen BJ, Linkov V (2008) High DMFC performance output using modified acid–base polymer blend. Int J Hydrog Energy 33:3132–3136

    Article  CAS  Google Scholar 

  43. Wu D, Xu T, Wu L, Wu Y (2009) Hybrid acid–base polymer membranes prepared for application in fuel cells. J Power Sources 186:286–292

    Article  CAS  Google Scholar 

  44. Saarinen V, Kallio T, Paronen M, Tikkanen P, Rauhala E, Kontturi K (2005) New ETFE-based membrane for direct methanol fuel cell. Electrochim Acta 50:3453–3460

    Article  CAS  Google Scholar 

  45. Ordonez LC, Roquero P, Sebastian PJ, Ramirez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrog Energy 32:3147–3315

    Article  CAS  Google Scholar 

  46. Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM (2003) Characterization of Ni–Pd alloy as anode for methanol oxidative fuel cell mater. Chem Phys 80:656–661

    CAS  Google Scholar 

  47. Liu H, Song C, Zhang L (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  48. Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 2:133–161

    Article  Google Scholar 

  49. Lamy C, Leger JM, Srinivasan S, Bockris JO’M, Conway BE, White RE (2001) Direct methanol fuel cells: from a twentieth century electrochemist's dream to a twenty-first century emerging technology. Modern Aspects of Electrochemistry 34:53–118

    CAS  Google Scholar 

  50. Zhou ZH, Li WS, Fu Z, Xiang XD (2010) Carbon nanotube-supported Pt-HxMoO3 as electrocatalyst for methanol oxidation. Int J Hydrog Energy 35:936–941

    Article  CAS  Google Scholar 

  51. Page T, Johnson R, Hormes J, Noding S, Rambabu B (2002) A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS. J Electroanal Chem 485:34–41

    Article  Google Scholar 

  52. Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals the case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal B Environ 63:137–149

    Article  CAS  Google Scholar 

  53. Jeon MK, Lee KR, Daimon H, Nakahara A, Woo SI (2008) Pt45Ru45M10/C (M = Fe, Co, and Ni) catalysts for methanol electro-oxidation. Catal Today 132:123–126

    Article  CAS  Google Scholar 

  54. Jeon MK, Won JY, Lee KR, Woo SI (2007) Highly active PtRuFe/C catalyst for methanol electro-oxidation. Electrochem Commun 9:2163–2166

    Article  CAS  Google Scholar 

  55. Wang ZB, Yin GP, Shi PF, Sun YC (2006) Novel Pt–Ru–Ni/C catalysts for methanol electro-oxidation in acid medium. Electrochem Solid State Lett 9:A13–A15

    Article  CAS  Google Scholar 

  56. Liu Z, Guo B, Tay SW, Hong L, Zhang X (2008) Physical and electrochemical characterizations of PtPb/C catalyst prepared by pyrolysis of platinum (II) and lead (II) acetyl acetonate. J Power Sources 184:16–22

    Article  CAS  Google Scholar 

  57. Jeon MK, Zhang Y, Mc Ginn PJ (2009) Effect of reduction conditions on electrocatalytic activity of a ternary PtNiCr/C catalyst for methanol electro-oxidation. Electrochim Acta 54:2837–2842

    Article  CAS  Google Scholar 

  58. Jeon MK, Paul J, Ginn M (2009) Composition dependence of ternary Pt–Ni–Cr catalyst activity for the methanol electro-oxidation reaction. J Power Sources 194:737–745

    Article  CAS  Google Scholar 

  59. Jeon MK, Cooper JS, Mc Ginn PJ (2009) Investigation of PtCoCr/C catalysts for methanol electro-oxidation identified by a thin film combinatorial method. J Power Sources 192:391–395

    Article  CAS  Google Scholar 

  60. Liu JH, Yu CB (2003) Chem studies on electrocatalytic performance of titanium oxide electrode modified with Pt toward oxidation of CO. J Chinese U 24:2263

    CAS  Google Scholar 

  61. Kim JH, Kwon SY, Bhattacharjya D, Chai GS, Yu JS (2013) High performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. J Catal 306:133–145

    Article  CAS  Google Scholar 

  62. Zellner MB, Chen JG (2005) Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catalyst Today 99:298–307

    Article  CAS  Google Scholar 

  63. Gregor H (2003) Fuel cell technology handbook. CRC Press LLC

  64. Oliveira Neto A, Franco EG, Arico E, Linardi M, Gonzalez ER, Eur J (2003) Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bo¨nnemann’s method. J Eur Ceram Soc 23:2987–2992

    Article  CAS  Google Scholar 

  65. Umeda M, Ojima H, Mohamedi M, Uchida I (2004) Methanol electrooxidation at Pt–Ru–W sputter deposited on Au substrate. J Power Sources 136:10–15

    Article  CAS  Google Scholar 

  66. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal Power Source 156:171–182

    Article  CAS  Google Scholar 

  67. Serov A, Kwak C (2009) Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal B Environ 90:313–320

    Article  CAS  Google Scholar 

  68. Izhar S, Nagai M (2008) Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. J Power Sources 182:52–60

    Article  CAS  Google Scholar 

  69. Rebello JS, Samant PV, Figueiredo JL, Fernandes JB (2006) Enhanced electrocatalytic activity of carbon-supported MnOx/Ru catalysts for methanol oxidation in fuel cells. J Power Sources 153:36–40

    Article  CAS  Google Scholar 

  70. Wang X, Waje M, Yan YS (2004) Methanol resistant cathodic catalyst for direct methanol fuel cells. J Electrochem Soc 151:A2183

    Article  CAS  Google Scholar 

  71. He W, Liu J, Qiao Y, Zou Z, Zhang X, Akins DL, Yang H (2010) Simple preparation of Pd–Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J Power Sources 195:1046–1050

    Article  CAS  Google Scholar 

  72. Madhu RNS (2011) Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int J Hydrog Energy 36:10006–10012

    Article  CAS  Google Scholar 

  73. Li HQ, Sun GQ, Li N, Sun SG, Su DS, Xin Q (2007) Design and preparation of highly active Pt − Pd/C catalyst for the oxygen reduction reaction. J Phys Chem 111:5605–5617

    CAS  Google Scholar 

  74. Li W, Xin Q, Yan Y (2010) Nanostructured Pt–Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition. Int J Hydrog Energy 35:2530–2538

    Article  CAS  Google Scholar 

  75. Yang H, Coutanceau C, Leger JM, Alonso-Vante N, Larmy C (2005) Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J Electroanal Chem 576:305–313

    Article  CAS  Google Scholar 

  76. Malheiro AR, Perez J, Villullas HM (2010) Surface structure and electronic properties of Pt_Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. J Power Sources 195:3111–3118

    Article  CAS  Google Scholar 

  77. Baglio V, Urso CD, Sebastia’n D, Stassi A, Arico AS (2014) PtCo catalyst with modulated surface characteristics for the cathode of direct methanol fuel cells. Int J Hydrog Energy 39:5399–5405

    Article  CAS  Google Scholar 

  78. Bonakdarpour A, Wenzel J, Stevens DA, Sheng S, Monchesky TL, Lobel R, Atanasoski RT, Schmoeckel AK, Vernstorm GD, Debe MK, Dahn JR (2005) Studies of transition metal dissolution from Combinatorially sputtered, nanostructured Pt1 − x M x (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells. J Electrochem Soc 152(1):A61–A72

    Article  CAS  Google Scholar 

  79. Feng Y, Gago A, Timperman L, Alonso-Vante (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56:1009–1022

    Article  CAS  Google Scholar 

  80. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24

    Article  CAS  Google Scholar 

  81. Okada M, Konta Y, Nakagawa N (2008) Carbon nano-fiber interlayer that provides high catalyst utilization in direct methanol fuel cell. J Power Sources 185:711–716

    Article  CAS  Google Scholar 

  82. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK (2001) Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem 105:1115–1118

    Article  CAS  Google Scholar 

  83. Steigerwalt ES, ADeluga G, Lukehart CM (2002) Pt − Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells a search for exceptional performance. J Phys Chem 106:760–766

    Article  CAS  Google Scholar 

  84. Chai GS, Yoon SB, Yu JS, Choi JH, Sung YE (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079

    Article  CAS  Google Scholar 

  85. Tatyana V, Reshetenko V, Kim HT, Kweon HJ (2008) Modification of cathode structure by introduction of CNT for air-breathing DMFC. Electrochim Acta 53:3043–3049

    Article  CAS  Google Scholar 

  86. Carrettel L, Friedrich KA, Stimming U (2003) Fuel cells–fundamentals and applications. Wiley, Chichester, UK

    Google Scholar 

  87. Wu QX, Zhao TS, Chen R, Yang WW (2009) Effects of anode microporous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells. J Power Sources 191:304–311

    Article  CAS  Google Scholar 

  88. Zhang J, Yin G-P, Lai Q-Z, Wang Z-B, Cai K-D, Liu P (2007) The influence of anode gas diffusion layer on the performance of low-temperature DMFC. J Power Sources 168:453–458

    Article  CAS  Google Scholar 

  89. Girishkumar G, Vinodgopal K, Kamat PV (2004) Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B 108:19960–19966

    Article  CAS  Google Scholar 

  90. Lebert M, Kaempgen M, Soehn M, Wirth T, Roth S, Nicoloso N (2009) Fuel cell electrodes using carbon nanostructures. Catal Today 143:64–68

    Article  CAS  Google Scholar 

  91. Nama K, Kim SLS-K, Yoon S-H, Jung D-H (2012) Application of silica as a catalyst support at high concentrations of methanol for direct methanol fuel cells. Int J Hydrog Energy 37:4619–4626

    Article  CAS  Google Scholar 

  92. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts-a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  93. Arbizzani C, Biso M, Manferrari E, Mastragostino M (2008) Passive DMFCs with PtRu catalyst on poly (3, 4-ethylenedioxythiophene)-polystyrene-4-sulphonate support. J Power Sources 180:41–45

    Article  CAS  Google Scholar 

  94. Cha HY, Choi HG, Nam JD, Lee Y, Cho SM, Lee ES (2004) Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist. Electrochim Acta 50:795–799

    Article  CAS  Google Scholar 

  95. Shao ZG, Lin WF, APaul C, Huamin Z (2006) Ti mesh anodes prepared by electrochemical deposition for the direct methanol fuel cell. Int J Hydrog Energy 31:1914–1919

    Article  CAS  Google Scholar 

  96. Yuan T, Zou Z, Chen M, Li Z, Xia B, Yang H (2009) New anodic diffusive layer for passive micro-direct methanol fuel cell. J Power Sources 192:423–428

    Article  CAS  Google Scholar 

  97. Hyeon T, Han S, Sung YE, Park KW, Kim YW (2003) High performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew Chem Int Ed 42:4352–4356

    Article  CAS  Google Scholar 

  98. Huang SY, Ganesan P, Popov BN (2011) Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl Catal B Environ 102:71–77

    Article  CAS  Google Scholar 

  99. Shing HS, Feng HC, Lun FC (2008) A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates. Micron 39:263–268

    Article  CAS  Google Scholar 

  100. Mallick RK, Thombre SB, Shrivastava NK (2015) A critical review of the current collector for passive direct methanol fuel cells. J Power Sources 285:510–529

    Article  CAS  Google Scholar 

  101. Tsujiguchi T, Ali Abdelkareem M, Kudo T, Nakagawa N, Shimizu T, Matsuda M (2010) Development of a passive direct methanol fuel cell stack for high methanol concentration. J Power Sources 195:5975–5979

    Article  CAS  Google Scholar 

  102. Wang Y, Derek O (2007) Northwood an investigation into TiN-coated 316 L stainless steel as a bipolar plate material for PEM fuel cells. J Power Sources 165:293–298

    Article  CAS  Google Scholar 

  103. Bernard Bladergroen, Huaneng Su, Sivakumar Pasupathi, Vladimir Linkov. (2012) Electrolysis Chapter 3 “Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer Electrolyte Electrolyzer” ().

  104. Chan YH, Zhao TS, Chen R, Xu C (2008) A small mono-polar direct methanol fuel cell stack with passive operation. J Power Sources 178:118–124

    Article  CAS  Google Scholar 

  105. Yang WM, Chou SK, Shu C (2007) Effect of current-collector structure on performance of passive micro direct methanol fuel cell. J Power Sources 164:549–554

    Article  CAS  Google Scholar 

  106. Zhang Y, Zhang P, Zhang B, Li J, Deng H, Liu X (2010) Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors. Int J Hydrog Energy 35:5638–5646

    Article  CAS  Google Scholar 

  107. Shrivastava NK, Thombre SB, Motghare RV (2014) Wire mesh current collectors for passive direct methanol fuel cells. J Power Sources 272:629–638

    Article  CAS  Google Scholar 

  108. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297–1302

    Article  CAS  Google Scholar 

  109. Chan YH, Zhao TS, Chen RA (2008) Self-regulated passive fuel-feed system for passive direct methanol fuel cells. J Power Sources 176:183–190

    Article  CAS  Google Scholar 

  110. Dohle H, Schmitz H, Bewer T, Mergel J, Stolten D (2002) Development of a compact 500 W class direct methanol fuel cell stack. J Power Sources 106:313–322

    Article  CAS  Google Scholar 

  111. Y.C. Park, D.H. Kim, S. Lim, S.K. Kim, D.H. Peck, D.H. Jung.Int. J. Hydrog. Energy (2011) ce11.

  112. Zhu Y, Liang J, Liu C, Ma T, Wang L (2009) Development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation. J Power Sources 193:649–655

    Article  CAS  Google Scholar 

  113. Xu C (2010) Amir Faghri, Xianglin Li, Travis Ward () methanol and water crossover in a passive liquid-feed direct methanol fuel cell. Int J Hydrog Energy 35:1769–1777

    Article  CAS  Google Scholar 

  114. Chen R, Zhao TS (2007) Porous current collectors for passive direct methanol fuel cells. Electrochim Acta 52:4317–4324

    Article  CAS  Google Scholar 

  115. Yuan W, Zhang X, Zhang S, Hu J, Li Z, Tang Y (2015) Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell. Renew Energy 81:664–670

    Article  CAS  Google Scholar 

  116. Barbera O, Stassi A, Sebastian D, Bonde JL, Giacoppo G, D'Urso C, Baglio V, Arico AS (2016) Simple and functional direct methanol fuel cell stack designs for application in portable and auxiliary power unit. International journal o f hydrogen energy 41:12320–12329

    Article  CAS  Google Scholar 

  117. Kim SH, Cha HY, Miesse CM, Jang JH, Oh YS, Cha SW (2009) Air-breathing miniature planar stack using the flexible printed circuit board as a current collector. Int J Hydrog Energy 34:459–466

    Article  CAS  Google Scholar 

  118. Hashim N, Kamarudin SK, Daud WRW (2009) A design, fabrication and testing of a PMMA-based passive single-c ell and a multi-cell stack micro-DMFC. Int J Hydrog Energy 34:8263–8269

    Article  CAS  Google Scholar 

  119. Yousefia S (2012) Davood Domiri Ganjib. Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699

    Article  CAS  Google Scholar 

  120. Borello D, Calabriso A, Cedola L, Del Zotto L (2014) Simone Giovanni Santori *development of improved passive configurations of DMFC with reduced contact resistance. 6th International Conference on Applied Energy – ICAE2014 Energy Procedia 61:2654–2657

    CAS  Google Scholar 

  121. Falcao DS, Pereira JP, Rangel CM, Pinto AMFR (2015) Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications. Int J Hydrog Energy 40:5408–5415

    Article  CAS  Google Scholar 

  122. Shrivastava NK, Thombre SB, Mallick RK (2014) Effect of diffusion layer compression on passive DMFC performance. Electrochim Acta 149:167–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema S. Munjewar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munjewar, S.S., Thombre, S.B. & Mallick, R.K. A comprehensive review on recent material development of passive direct methanol fuel cell. Ionics 23, 1–18 (2017). https://doi.org/10.1007/s11581-016-1864-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1864-1

Keyword

Navigation