Skip to main content
Log in

Thermal conductivity and expansion of PbF2 single crystals

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to check a phenomenon of the negative correlation between ionic and thermal conductivities of solid substances, we studied the thermal conductivity and expansion of cubic PbF2 single crystals at 50–300 and 5.6–317 K, respectively. We found that lead difluoride had a thermal expansion coefficient α that was equal to (28.5 ± 0.3)10−6 K−1 at 300 K, and a thermal conductivity coefficient k(T) was equal to 1.40 ± 0.07 W/(m K) at the same temperature. Thus, the thermal conductivity for PbF2 is the lowest among fluorite-type MF2 (M = Ca, Sr, Ba, Cd, Pb) thermal conductivities, whereas its fluoride-ion conductivity is the highest one among MF2 (M = Ca, Sr, Ba, Cd, Pb) ionic conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buchinskaya II, Fedorov PP (2004) Rus Chemical Rev 73:371–400. doi:10.1070/RC2004v073n04ABEH000811

    Article  CAS  Google Scholar 

  2. Faraday M (1838) PhilosTrans R Soc London 128:1–40. doi:10.1098/rstl.1838.0008

    Google Scholar 

  3. Tubandt C (1921) Z Anorg Chem 115:105–126. doi:10.1002/zaac.19211150106

    Article  CAS  Google Scholar 

  4. Derrington CE, O’Keeffe M (1973) Nature Phys Sci 246:44–46. doi:10.1038/physci246044a0

    Article  CAS  Google Scholar 

  5. Kennedy JH, Miles R, Hunter J (1973) J Electrochem Soc 120:1441–1446. doi:10.1149/1.2403280

    Article  CAS  Google Scholar 

  6. Benz R (1975) Z fur Physikalische Chem Neue Folge 95:25–32

    Article  CAS  Google Scholar 

  7. Bonne RW, Schoonman J (1977) J Electrochem Soc 124:28–35. doi:10.1149/1.2133236

    Article  CAS  Google Scholar 

  8. Lucat C, Rhandor A, Reau JM, Portier J, Hagenmuller P (1978) Ann Chim Fr 3:279–285

    CAS  Google Scholar 

  9. Hagenmuller P, Reau JM, Lucat C, Matar S, Villeneuve G (1981) Solid State Ionics 3-4:341–345. doi:10.1016/0167-2738(81)90110-7

    Article  CAS  Google Scholar 

  10. Reau JM, Fedorov PP, Rabardel L, Matar SF, Hagenmuller P (1983) Mat Res Bull 18:1235–1246. doi:10.1016/0025-5408(83)90027-2

    Article  CAS  Google Scholar 

  11. Murin IV, Chernov SV (1982) Inorg Mater 18:168–169

    CAS  Google Scholar 

  12. Murin IV, Glumov OV, Murin AN (1983) Sov Radiochem 25:29–32

    Google Scholar 

  13. Kosacki I, Litvinchuk AP, Tarasov JJ, Ya Valakh M (1989) J Phys Condens Matter 1:929–934. doi:10.1088/0953-8984/1/5/009

    Article  CAS  Google Scholar 

  14. Sorokin NI, Fedorov PP, Sobolev BP (1997) Inorg Mater 33:1–11

    CAS  Google Scholar 

  15. Trnovcova V, Fedorov PP, Buchinskaya II, Smatko V, Hanic F (1999) Solid State Ionics 119:181–189. doi:10.1016/S0167-2738(98)00501-3

    Article  CAS  Google Scholar 

  16. Ya Kavun V, Slobodyuk AB, Tararako EA, Mikhteeva EY, Goncharuk VK, Uvarov NF, Sergienko VI (2005) Inorg Mater 41:1228–1235. doi:10.1007/s10789-005-0292-9

    Article  Google Scholar 

  17. Ya Kavun V, Slobodyuk AB, Tararako EA, Goncharuk VK, Uvarov NF, Sergienko VI (2007) Inorg Mater 43:301–309. doi:10.1134/S002016850703017X

    Article  Google Scholar 

  18. Trnovcova V, Fedorov PP, Furar I, Rare J (2008) Earths 26:225–232. doi:10.1016/S1002-0721(08)60070-8

    Article  Google Scholar 

  19. Catlow CRA, Comins JD, Germano FA, Harley RT, Hayes W (1978) J Phys C Solid State Phys 11:3197–3212. doi:10.1088/0022-3719/11/15/019

    Article  CAS  Google Scholar 

  20. Gordon RE, Strange JH (1978) J Phys C Solid State Phys 11:3213–3223. doi:10.1088/0022-3719/11/15/020

    Article  CAS  Google Scholar 

  21. Schoonman J (1980) Solid State Ionics 1:121–131. doi:10.1016/0167-2738(80)90027-2

    Article  CAS  Google Scholar 

  22. Schoonman J (1981) Solid State Ionics 5:71–76. doi:10.1016/0167-2738(81)90197-1

    Article  CAS  Google Scholar 

  23. Oberschmidt J (1981) Phys Rev B 23:5038–5047. doi:10.1103/PhysRevB.23.5038

    Article  CAS  Google Scholar 

  24. Dickens MH, Hayes W, Hutchings MT, Smith C (1982) J Phys C Solid State Phys 15:4043–4060. doi:10.1088/0022-3719/15/19/006

    Article  CAS  Google Scholar 

  25. Catlow CRA, Hayes W (1982) J Phys C Solid State Phys 15:L9–L13

    Article  CAS  Google Scholar 

  26. Goff JP, Hayes W, Hull S, Hutchings MT (1991) J Phys Condens Matter 3:3677–3687. doi:10.1088/0953-8984/3/21/001

    Article  CAS  Google Scholar 

  27. Findley PR, Wu Z, Walker WC (1982) Solid State Ionics 7:49–52. doi:10.1016/0167-2738(82)90067-4

    Article  CAS  Google Scholar 

  28. Ito K, Koto K, Yoshikado S, Ohachi T (1985) Solid State Ionics 15:253–258. doi:10.1016/0167-2738(85)90011-6

    Article  CAS  Google Scholar 

  29. Bredig MA (1972) Etudes des transformations cristallines a haute temperatures. Colloques Int CNRS 205:183

    Google Scholar 

  30. Fedorov PP (1996) Russ J Phys Chem 70:336–338

    Google Scholar 

  31. Fedorov PP, Popov PA (2013) Nanosystems: Physics, Chemistry, Mathematics 4:148–159 in Russian

    Google Scholar 

  32. Sorokin NI, Karimov DN, Buchinskaya II, Sobolev BP, Popov PA (2015) Crystallogr Rep 60:532–536. doi:10.1134/S1063774515040215

    Article  CAS  Google Scholar 

  33. Mogilevskii BM, Tumpurova VF, Chudnovskii AF, Kaplan ED, Puchkina LM, Reiterov VM (1976) J Eng Phys Thermophys 30:210–214

    Article  Google Scholar 

  34. Sauka YY (1951) Russ J Phys Chem 25:41–48 in Russian

    CAS  Google Scholar 

  35. White GK (1980) J Phys C Solid State Phys 13:4905–4913. doi:10.1088/0022-3719/13/26/012

    Article  CAS  Google Scholar 

  36. Roberts RB, White GK (1986) J Phys C Solid State Phys 19:7167–7172. doi:10.1088/0022-3719/19/36/008

    Article  CAS  Google Scholar 

  37. Hussain W, Sirdeshmukh DB (1987) Pramana – J Phys 29:583–588. doi:10.1007/BF02845838

    Article  CAS  Google Scholar 

  38. Aurora TS, Pederson DO, Day SM (1990) Phys Rev B Condens Matter 41:9647–9649. doi:10.1103/Phys RevB.41.9647

    Article  CAS  Google Scholar 

  39. Fedorov PP, Osiko VV (2005) Crystal growth of fluorides. In: Capper P (ed) Bulk crystal growth of electronic, optical and optoelectronic materials, Wiley Series in Materials for Electronic and Optoelectronic Applications. John Wiley & Son, Ltd., Chichester, pp. 339–355

    Google Scholar 

  40. Akchurin MS, Basiev TT, Demidenko AA, Doroshenko ME, Fedorov PP, Garibin EA, Gusev PE, Kuznetsov SV, Krutov MA, Mironov IA, Osiko VV, Popov PA (2013) Opt Mater 35:444–450. doi:10.1016/j.optmat.2012.09.035

    Article  CAS  Google Scholar 

  41. Popov PA, Fedorov PP (2012) Thermal conductivity of fluoride optical materials. Desyatochka, Bryansk. (In Russian) ISBN 978–5–91877-093-1

  42. Sirota NN, Sidorov AA (1985) Dokl Akad Nauk SSSR 284:1111–1115

    CAS  Google Scholar 

  43. Ivanov-Shits AK, Sorokin NI, Fedorov PP, Sobolev BP (1983) Sov Phys Solid State 25:1007–1010

    Google Scholar 

  44. Jones DA (1976) J Crystal Growth 34:149-151. doi:10.1016/0022-0248(76)90274-8

    Article  CAS  Google Scholar 

  45. Аrkhangelskaya VА, Baklanova VI, Ivanova IA, et al. (1983) Trydu GOI (Proc Optical State Institute) 54:129–134 In Russian

    Google Scholar 

  46. Walker WC, Wu Z, Findley PF (1983) Solid State Ionics 33:105–108

    Article  Google Scholar 

  47. Shen D, Yuan X, Zhang L, et al. (1995) J Chin Ceram Soc 23:667–672 in Chinese

    CAS  Google Scholar 

  48. R.D. Appuhn, F. Brasse, T. Deckers, H. Kolanoski, V. Korbel, A. Lindner, K. Meier, S. Spielmann, S. Valkar, A. Walther, D. Wegener (1994) Nuclear Instruments and Methods in Phys Res A 350:208–215. doi:10.1016/0168-9002(94)91166-5

  49. Berman R (1976) Thermal conduction in solids. Clarendon Press, Oxford

    Google Scholar 

  50. Popov PA, Dykel’skii KV, Mironov IA, Smirnov AN, Smolyanskii PL, Fedorov PP, Osiko VV, Basiev TT (2007) Dokl Phys 52:7–9. doi:10.1134/S1028335807010028

    Article  CAS  Google Scholar 

  51. Popov PA, Fedorov PP, Konyushkin VA, Nakladov AN, Kuznetsov SV, Osiko VV, Basiev TT (2008) Dokl Phys 53:413–415. doi:10.1134/S1028335808080016

    Article  CAS  Google Scholar 

  52. Popov PA, Fedorov PP, Kuznetsov SV, Konyushkin VA, Osiko VV, Basiev TT (2008) Dokl Phys 53:353–355. doi:10.1134/S1028335808070045

    Article  CAS  Google Scholar 

  53. Popov PA, Fedorov PP, Osiko VV (2010) Phys Solid State 52:504–508. doi:10.1134/S1063783410030091

    Article  CAS  Google Scholar 

  54. Sorokin NI, Fedorov PP, Ivanov-Shits AK, Sobolev BP (1988) Phys Solid State 30:890–891

    Google Scholar 

  55. Ivanov-Shits AK, Murin IV (2010) (In Russian) ISBN 978-5-288-04966-8 Ionika Tverdogo Tela. St. Petersburg State University, St.-Petersburg

    Google Scholar 

  56. Popov PA, Fedorov PP, Kuznetsov SV, Konyushkin VA, Osiko VV, Basiev TT (2008) Dokl Phys 53:198–200. doi:10.1134/S102833580804006X

    Article  CAS  Google Scholar 

  57. Popov PA, Fedorov PP, Konyshkin VA (2015) Crystallogr Rep 60:744–748. doi:10.1134/S1063774515050107

    Article  CAS  Google Scholar 

  58. Popov PA, Fedorov PP, Osiko VV (2014) Dokl Phys 59:199–202. doi:10.1134/S1028335814050036

    Article  CAS  Google Scholar 

  59. Shimoni-Livny L, Glusker JP, Bock CW (1998) Inorg Chem 37:1853–1867. doi:10.1021/ic970909r

    Article  CAS  Google Scholar 

  60. Jamieson JC, Manghnani MH, Matsui T, Ming LС (1986) J Geophys Res 91:4643–4649. doi:10.1029/JB091iB05p04643

    Article  CAS  Google Scholar 

  61. Bazhenov AV, Smirnova IS, Fursova TN, Maksimuk MY, Kulakov AB, Bdikin IK (2000) Phys Solid State 42:41–50. doi:10.1134/1.1131165

    Article  CAS  Google Scholar 

  62. Sobolev BP, Fedorov PP (1993) Inorg Mater 29:382–401

    Google Scholar 

  63. Ivanov SN, Egorov GV, Popov PA (1992) Solid State Phys 34:1928–1929

    Google Scholar 

  64. Popov PA, Solomennik VD, Lomonova EE, Borik MA, Myzina VA (2012) Phys Solid State 54:658–661. doi:10.1134/S1063783412030250

    Article  CAS  Google Scholar 

  65. Huang X, Zakurdaev A, Wang D (2008) J Mater Sci 43:2631–2641. doi:10.1007/s10853-008-2480-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the kindest help of Arthur I. Popov, Richard L. Simoneaux, and E. Popova in the preparation of this manuscript. This work was carried out as a part of the Russian Federation state contract no. 3.105.2014/K and supported by the corresponding government funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, P.A., Sidorov, А.А., Kul’chenkov, Е.А. et al. Thermal conductivity and expansion of PbF2 single crystals. Ionics 23, 233–239 (2017). https://doi.org/10.1007/s11581-016-1802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1802-2

Keywords

Navigation