Skip to main content
Log in

Preparation and characterization of a new PEO-PPG blend polymer electrolyte system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reports on preparation and characterization of thin films of a new zinc ion conducting blended polymer electrolyte system containing polyethylene oxide [PEO] and polypropylene glycol [PPG] complexed with zinc triflate [Zn(CF3SO3)2] salt. The room temperature ionic conductivity (σ 298K) data of such PEO-PPG polymer blends prepared by solution casting technique were found to be of the order of 10−5 S cm−1, whereas the optimized composition containing 90:10 wt% ratio of PEO and PPG possessed an appreciably high ionic conductivity of 7.5 × 10−5 S cm−1. Subsequently, six different weight percentages of zinc triflate viz., 2.5, 5, 7.5, 10, 12.5 and 15, respectively, were added into the above polymer blend and resulting polymer-salt complexes were characterized by means of various analytical tools. Interestingly, the best conducting specimen namely 87.5 wt% (PEO:PPG)-12.5 wt% Zn(CF3SO3)2 exhibited an enhanced room temperature ionic conductivity of 6.9 × 10−4 S cm−1 with an activation energy of 0.6 eV for ionic conduction. The present XRD results have indicated the occurrence of characteristic PEO peaks and effects of salt concentration on the observed intensity of these diffraction peaks. Appropriate values of degree of crystallinity for different samples were derived from both XRD and DSC analyses, while an examination of surface morphology of the blended polymer electrolyte system has revealed the formation of homogenous spherulites involving a rough surface and relevant zinc ionic transport number was found to be 0.59 at room temperature for the best conducting polymer electrolyte system thus developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191:601–613. doi:10.1016/j.jpowsour.2009.01.100

    Article  CAS  Google Scholar 

  2. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370. doi:10.1016/j.electacta.2014.07.120

    Article  CAS  Google Scholar 

  3. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: material designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001. doi:10.1088/0022-3727/41/22/223001

    Article  Google Scholar 

  4. Syzdek J, Armand M, Marcinek M, Zalewska A, ˙Zukowska G, Wieczorek W (2010) Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes. Electrochim Acta 55:1314–1322. doi:10.1016/j.electacta.2009.04.025

    Article  CAS  Google Scholar 

  5. Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181. doi:10.1016/j.matchemphys.2013.06.053

    Article  CAS  Google Scholar 

  6. Reddeppa N, Sharma AK, Rao VVRN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41. doi:10.1016/j.measurement.2013.08.047

    Article  Google Scholar 

  7. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochim Acta A 76:287–292. doi:10.1016/j.saa.2009.09.031

    Article  CAS  Google Scholar 

  8. Caramia V, Bayer SI, Anyfantis GC, Ruffilli R, Ayadi F, Martiradonna L, Cingolani R, Athanassiou A (2013) Tailoring the morphology of poly(ethylene oxide)/silver triflate blends: from crystalline to self-assembled nanofibrillar structures. Nanotechnology 24:055602. doi:10.1088/0957-4484/24/5/055602

    Article  Google Scholar 

  9. Borkowska R, Laskowski J, Plocharski J, Przyluski J, Wieczorek W (1993) Performance of acrylate-poly(ethylene oxide) polymer electrolytes in lithium batteries. J Appl Electrochem 23:991

    Article  CAS  Google Scholar 

  10. Wieczorek W, Stevens JR (1997) Impedance spectroscopy and phase structure of polyether-poly(methyl methacrylate)-LiCF3SO3 blend-based electrolytes. J Phys Chem B 101:1529–1534. doi:10.1021/jp962517w

    Article  CAS  Google Scholar 

  11. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. doi:10.1016/S0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  12. Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY (2011) Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196:41–47. doi:10.1016/j.ssi.2011.06.001

    Article  CAS  Google Scholar 

  13. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDFLiClO4 polymer electrolytes. Solid State Ionics 104:267–276

    Article  CAS  Google Scholar 

  14. Radhakrishnan S, Venkatachalapathy PD (1996) Effect of casting solvent on the crystallization in PEO/PMMA blends. Polymer 37:3749–3752. doi:10.1016/0032-3861(96)00192-9

    Article  CAS  Google Scholar 

  15. Sekhar PC, Kumar PN, Sharma AK (2012) Effect of plasticizer on conductivity and cell parameters of (PMMA + NaClO4) polymer electrolyte system. J Appl Phys 2:01–06. doi:10.9790/4861-0240106

    Article  Google Scholar 

  16. Rand DAJ (1979) Battery systems for electric vehicles—a state-of-the-art review. J Power Sources 4:101–143. doi:10.1016/0378-7753(79)85001-6

    Article  CAS  Google Scholar 

  17. Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297–1304. doi:10.1016/S0014-3057(01)00310-X

    Article  CAS  Google Scholar 

  18. Kang MS, Kim JH, Kim YJ, Won J, Park NG, Kang YS (2004) Dye-sensitized solar cells based on composite solid polymer electrolytes. Chem Commun 889-891. doi: 10.1039/B412129P

  19. Paulmer RDA, Kulkarni AR (1994) Synthesis and conductivity behavior of ternary PEO-PPG-NaClO4 amorphous blends. Solid State Ionics 68:243–247. doi:10.1016/0167-2738(94)90182-1

    Article  CAS  Google Scholar 

  20. Kumar GG, Sampath S (2004) Spectroscopic characterization of a gel polymer electrolyte of zinc triflate and polyacrylonitrile. Polymer 45:2889–2895. doi:10.1016/j.polymer.2004.02.053

    Article  CAS  Google Scholar 

  21. Sownthari K, Suthanthiraraj SA (2014) Preparation and properties of a gel polymer electrolyte system based on poly-ε-caprolactonecontaining1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide. J Phys Chem Solids 75:746–751. doi:10.1016/j.jpcs.2014.02.003

    Article  CAS  Google Scholar 

  22. Narayanan NSV, Ashokraj BV, Sampath S (2010) Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: application in rechargeable zinc batteries. J Colloid Interface Sci 342:505–512. doi:10.1016/j.jcis.2009.10.034

    Article  CAS  Google Scholar 

  23. Tao R, Zhao Y, Fujinami T (2007) Lithium borate–PEO polymer electrolytes characterized with high lithium ion transference numbers. Mater Sci Eng B 137:69–73. doi:10.1016/j.mseb.2006.10.010

    Article  CAS  Google Scholar 

  24. Watanabe M, Tokuda H, Muto S (2001) Anionic effect on ion transport properties in network polyether electrolytes. Electrochim Acta 46:1487–1491. doi:10.1016/S0013-4686(00)00743-X

    Article  CAS  Google Scholar 

  25. Ciosek M, Sannier L, Siekierski M, Golodnitsky D, Peled E, Scrosati B, Głowinkowski S, Wieczorek W (2007) Ion transport phenomena in polymeric electrolytes. Electrochim Acta 53:1409–1416. doi:10.1016/j.electacta.2007.03.037

    Article  CAS  Google Scholar 

  26. Fan F (2015) Ion transport in polymer electrolytes. PhD dissertation, University of Tennessee

  27. Zainol NH, Samin SM, Othman L, Isa KBM, Chong WG, Osman Z (2013) Magnesium ion-based gel polymer electrolytes: ionic conduction and infrared spectroscopy studies. Int J Electrochem Sci 8:3602–3614

    CAS  Google Scholar 

  28. Evans J, Colin VA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328. doi:10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  29. Guinier A (1994) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dover Publications, New York

    Google Scholar 

  30. Hyun J (2001) A new approach to characterize crystallinity by observing the mobility of plasma treated polymer surfaces. Polymer 42:6473–6477. doi:10.1016/S0032-3861(01)00116-1

    Article  CAS  Google Scholar 

  31. Dey A, Karan S, De SK (2010) Molecular interaction and ionic conductivity of polyethylene oxide–LiClO4 nanocomposites. J Phys Chem Solids 71:329–335

    Article  CAS  Google Scholar 

  32. Booth C, Pickles CJ (1973) Phase separation in mixtures of poly(ethylene oxide) and poly(propylene oxide). J Polym Sci B Polym Phys 11:595. doi:10.1002/pol.1973.180110316

    Article  CAS  Google Scholar 

  33. Sownthari K, Suthanthiraraj SA (2015) Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries. Electrochim Acta 174:885–892. doi:10.1016/j.electacta.2015.06.049

    Article  CAS  Google Scholar 

  34. Guisao JPT, Romero AJF (2015) Interaction between Zn2+ cations and n-methyl-2-pyrrolidone in ionic liquid-based gel polymer electrolytes for Zn batteries. Electrochim Acta 176:1447–1453. doi:10.1016/j.electacta.2015.07.132

    Article  CAS  Google Scholar 

  35. Prasanna CMS, Suthanthiraraj SA (2015) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics. doi:10.1007/s11581-015-1546-4

    Google Scholar 

  36. Armand MB, Chabagno JM, Duclot MJ, Vashista P, Mundy JN, Shenoy GK (1979) Fast ion transport in solids, North Holland, p. 131

  37. Souquet JL, Lévy M, Duclot M (1994) A single microscopic approach for ionic transport in glassy and polymer electrolytes. Solid State Ionics 70/71:337. doi:10.1016/0167-2738(94)90333-6

    Article  Google Scholar 

  38. Fan F, Wang Y, Sokolov AP (2013) Ionic transport, micro-phase separation, and polymer relaxation in poly(propylene glycol) and lithium perchlorate mixtures. Macromolecules 46:9380–9389. doi:10.1021/ma401238k

    Article  CAS  Google Scholar 

  39. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi crystalline poly(vinyl alcohol) films. Polymer 37:1371–1376. doi:10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  40. Amudha S, Suthanthiraraj SA (2015) Silver ion conducting characteristics of a polyethylene oxide-based composite polymer electrolyte and application in solid state batteries. Adv Mater Lett 6(10):874–882. doi:10.5185/amlett.2015.5831

    Article  CAS  Google Scholar 

  41. Akhtar MS, Kim UY, Choi DJ, Yang OB (2010) Effect of electron beam irradiation on the properties of polyethylene oxide–TiO2 composite electrolyte for dye sensitized solar cells. Mater Sci Forum 658:161–164. doi:10.4028/www.scientific.net/MSF.658.161

    Article  CAS  Google Scholar 

  42. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2015) Ionic conductivity enhancement in PEO:CuSCN solid polymer electrolyte by the incorporation of nickel-chloride. Solid State Ionics 278:177–180. doi:10.1016/j.ssi.2015.06.014

    Article  CAS  Google Scholar 

  43. Ulaganathan M, Nithya R, Rajendran S, in: Viacheslav Kazmiruk (Ed.), (2012) Scanning electron microscopy, ISBN: 978-953-51-0092-8, InTech 671-694

  44. Chu PP, Reddy MJ, Kao HM (2003) Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics 156:141. doi:10.1016/S0167-2738(02)00582-9

    Article  CAS  Google Scholar 

  45. Suthanthiraraj SA, Vadivel MK (2012) Effect of propylene carbonate as a plasticizer on (PEO)50AgCF3SO3:SnO2 nanocomposite polymer electrolyte. Appl Nanosci 2:239. doi:10.1007/s13204-012-0099-3

    Article  CAS  Google Scholar 

  46. Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the characterization facility provided for FESEM analysis by the National Centre for Nanoscience and Nanotechnology, University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Christina Nancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nancy, A.C., Suthanthiraraj, S.A. Preparation and characterization of a new PEO-PPG blend polymer electrolyte system. Ionics 22, 2399–2408 (2016). https://doi.org/10.1007/s11581-016-1767-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1767-1

Keywords

Navigation