Skip to main content
Log in

A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers (LCI), PEO/PMMA/LiClO4/LCI, and PEO/LiClO4/LCI were prepared by solution casting technology. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) analysis proved that LCI uniformly dispersed into the solid electrolytes and restrained phase separation of PEO and PMMA. Differential scanning calorimetry (DSC) results showed that LCI decreases the crystallinity of blends solid polymer electrolytes. Thermogravimetric analysis (TGA) proved LCI not only improved thermal stability of PEO/PMMA/LiClO4 blends but also prevent PEO/PMMA from phase separation. Infrared spectra results illustrated that there exists interaction among Li+ and O, and LCI that promotes the synergistic effects between PEO and PMMA. The EIS result revealed that the conductivity of the electrolytes increases with LiClO4 concentration in PEO/PMMA blends, but it increases at first and reaches maximum value of 2.53 × 10−4 S/cm at 1.0 % of LCI. The addition of 1.0 % LCI increases the conductivity of the electrolytes due to that LCl promoting compatibility and interaction of PEO and PMMA. Under the combined action of rigidity induced crystal unit, soft segment and the terminal ionic groups in LCI, PEO/PMMA interfacial interaction are improved, the reduction of crystallinity degree of PEO leads Li+ migration more freely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nazri GA, Pistoia G (2008) Lithium batteries: science and technology. Springer Science & Business

  2. Scrosati B, Garche J (2010) J Power Sources 195(9):2419

    Article  CAS  Google Scholar 

  3. Scrosati B, Croce F, Persi L (2000) J Electrochem Soc 147(5):1718

    Article  CAS  Google Scholar 

  4. Fenton D, Parker J, Wright P (1973) Polymer 14(11):589

    Article  CAS  Google Scholar 

  5. Xu X, Wang Q (1991) Chem J Chin Univ 12(3):413

    Google Scholar 

  6. Cai F, Zuo X, Liu XM (2013) Electrochim Acta 106:209

    Article  CAS  Google Scholar 

  7. Radhakrishnan S, Venkatachalapathy P (1996) Polymer 37(16):3749

    Article  CAS  Google Scholar 

  8. Imrie CT, Ingram MD, Mchattie GS (1999) Adv Mater 11(10):832

    Article  CAS  Google Scholar 

  9. Nayak GC, Das CK (2016) Liquid Crystalline Polymers: LCP Based Polymer Blend Nanocomposites. Springer International Publishing, p251

  10. Li Y, Zhang BY, Feng Z (2002) J Appl Polym Sci 83(13):2749

    Article  CAS  Google Scholar 

  11. Qu WZ, Xu XY, Chu HZ, Zhang BY (2011) Polym Mater Sci Eng 27(2):107

    CAS  Google Scholar 

  12. Xu XY, Zhou ZL (2015) Appl Mech Mater 751:21–25

    Article  Google Scholar 

  13. Li YM, Zhang BY, Wang J (2002) J Funct Polym 15(1):1

    Article  Google Scholar 

  14. Stoeva Z, Lu Z, Ingram MD (2013) Electrochim Acta 93:p279

    Article  Google Scholar 

  15. Xia Y, Wang S, Ma N (2014) China Synth Resin Plast 31(2):25

    Google Scholar 

  16. Donald AM, Windle AH, Hanna S (2006) Liquid Crystalline Polymers: Liquid crystalline polymers in blends and composites (Cambridge University Press), p483

  17. Zhang AL (2002) Main-Chain Liquid Crystalline Ionomer and Composite Materials. Ph.D., Northeastern University, China

  18. Liu Q, Pan C, Shen S (2006) Chin J Nonferrous Met 16(2):377

    CAS  Google Scholar 

  19. Wang Y, Li M, Rong J (2013) Colloid Polym Sci 291(6):1541

    Article  CAS  Google Scholar 

  20. Su YL, Liu HZ, Guo C (2003) Mol Simul 29(12):803

    Article  CAS  Google Scholar 

  21. Ramesh S, Yuen TF, Shen CJ (2008) Spectrochim Acta A Mol Biomol Spectrosc 69(2):670

    Article  CAS  Google Scholar 

  22. Ghelichi M, Qazvini NT, Jafari SH (2013) J Appl Polym Sci 129(4):1868

    Article  CAS  Google Scholar 

  23. Chen N, Yan LT, Xie XM (2013) Macromolecules 46(9):3544

    Article  CAS  Google Scholar 

  24. Schwahn D, Pipich V, Richter D (2012) Macromolecules 45(4):2035

    Article  CAS  Google Scholar 

  25. Shi W, Yang J, Zhang Y (2012) Macromolecules 45(2):941

    Article  CAS  Google Scholar 

  26. Angulakshmi N, Thomas S, Nahm KS (2011) Ionics 17(5):407

    Article  CAS  Google Scholar 

  27. Toshimi H, Takashi K, James EB (1985) Macromolecules 18:1410

    Article  Google Scholar 

Download references

Acknowledgments

Liaoning Provincial Key Laboratory for Polymer Catalytic Synthesis Technology (Document No.36 by DST, Liaoning Province [2010].); Advanced Polymer Materials Engineering Laboratory in Liaoning province (2012.5); and Shenyang Science and Technology plan project (F14-231-1-28) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Al., Cao, Fy., Na, Gz. et al. A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers. Ionics 22, 2103–2112 (2016). https://doi.org/10.1007/s11581-016-1732-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1732-z

Keywords

Navigation