Skip to main content
Log in

Carbon-supported Co(III) dimer for oxygen reduction reaction in alkaline medium

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Non-precious metal electrocatalysts obtained by pyrolysis of precursors of metal, nitrogen, and carbon (MNC) are viewed as an inexpensive replacement for platinum-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. The hypothesized ORR active site structure of typical MNC catalysts consists of a transition metal coordinated to the pyridinic/pyrollic type of nitrogen covalently attached to the edges of the graphitic crystallites. One of the drawbacks of all the reported procedures to synthesize these MNC electrocatalysts is the inability to control the formation of a specific active site structure suitable for ORR. Lack of clarity on the active site structure limits the researcher’s ability to design a synthesis methodology that maximizes the specific active site density. In this study, we have synthesized a Co(III) dimer ([Co2(OH)2(OOCCH3)3(bpy)2] NO3 ⋅ 1.5 H2 O) and demonstrated its ORR activity in alkaline medium. The ORR activity and methanol tolerance property of the Co(III) dimer were compared with those of Ketjenblack carbon (used as support for Co(III) dimer) and commercial 20 wt% Pt/C, respectively. Since Co(III) dimer is a molecular material, its characterization by single-crystal X-ray diffraction, nuclear magnetic resonance, and infrared studies revealed the chemical structure unambiguously. Density functional theory calculation predicted the possibility of both end-on and side-on oxygen adsorption at the metal center of the Co(III) dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  2. Yousefi S, Zohoor M (2013) Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC. Ionics 19(8):1195–1201. doi:10.1007/s11581-013-0924-z

    Article  CAS  Google Scholar 

  3. Yousefi S, Ganji DD (2012) Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699. doi:10.1016/j.electacta.2012.08.045

    Article  CAS  Google Scholar 

  4. Shrivastava NK, Thombre SB, Mallick RK (2014) Effect of diffusion layer compression on passive DMFC performance. Electrochim Acta 149:167–175. doi:10.1016/j.electacta.2014.10.080

    Article  CAS  Google Scholar 

  5. Yousefi S, Shakeri M, Sedighi K (2013) The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell. Ionics 19(11):1637–1647. doi:10.1007/s11581-013-0889-y

    Article  CAS  Google Scholar 

  6. Yousefi S, Zohoor M (2014) Conceptual design and statistical overview on the design of a passive DMFC single cell. Int J Hydrog Energy 39(11):5972–5980. doi:10.1016/j.ijhydene.2014.01.117

    Article  CAS  Google Scholar 

  7. Hashemi R, Yousefi S, Faraji M (2015) Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics 21(10):2851–2862. doi:10.1007/s11581-015-1479-y

    Article  CAS  Google Scholar 

  8. Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112(5):526–528. doi:10.1149/1.2423590

    Article  CAS  Google Scholar 

  9. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrog Energy 37(1):357–372. doi:10.1016/j.ijhydene.2011.08.095

    Article  CAS  Google Scholar 

  10. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156(2):171–182. doi:10.1016/j.jpowsour.2005.05.069

    Article  CAS  Google Scholar 

  11. Yatsimirskii KB (1990) Metal complexes of macrocycles in catalysis. Russ Chem Rev 59(12):1150

    Article  Google Scholar 

  12. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1978) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2(3):233–240. doi:10.1016/0378-7753(78)85014-9

    Article  Google Scholar 

  13. van Veen JAR, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte II. Stability Berichte der Bunsengesellschaft für Physikalische Chemie 85(9):700–704. doi:10.1002/bbpc.19810850918

    Article  Google Scholar 

  14. van Veen JAR, van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte I. Activity. Berichte der Bunsengesellschaft für Physikalische Chemie 85(9):693–700. doi:10.1002/bbpc.19810850917

    Article  Google Scholar 

  15. Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22(3–4):457–475. doi:10.1016/0254-0584(89)90010-2

    Article  CAS  Google Scholar 

  16. Ladouceur M, Lalande G, Guay D, Dodelet JP, Dignard‐Bailey L, Trudeau ML, Schulz R (1993) Pyrolyzed cobalt phthalocyanine as electrocatalyst for oxygen reduction. J Electrochem Soc 140(7):1974–1981. doi:10.1149/1.2220748

    Article  CAS  Google Scholar 

  17. Domínguez C, Pérez-Alonso FJ, Abdel Salam M, de la Fuente JL G, Al-Thabaiti SA, Basahel SN, Peña MA, Fierro JLG, Rojas S (2014) Effect of transition metal (M: Fe, Co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium. Int J Hydrog Energy 39(10):5309–5318. doi:10.1016/j.ijhydene.2013.12.078

    Article  Google Scholar 

  18. van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33(6):801–804. doi:10.1016/S0013-4686(98)80010-8

    Article  Google Scholar 

  19. Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19(1):19–27. doi:10.1007/BF01039385

    Article  CAS  Google Scholar 

  20. Hung T-F, Chen S-H, Tu M-H, Lu Z-H, Chen CK, Liu R-S, Greer HF, Zhou W, Lo M-Y (2014) Advances in carbon-incorporated non-noble transition metal catalysts for oxygen reduction reaction in polymer electrolyte fuel cells. J Chin Chem Soc 61(1):93–100. doi:10.1002/jccs.201300286

    Article  CAS  Google Scholar 

  21. Banham D, Ye S, Pei K, Ozaki J-i, Kishimoto T, Imashiro Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334–348. doi:10.1016/j.jpowsour.2015.03.047

    Article  CAS  Google Scholar 

  22. Zhu C, Li H, Fu S, Du D, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev. doi:10.1039/C5CS00670H

    Google Scholar 

  23. Artyushkova K, Serov A, Rojas-Carbonell S, Atanassov P (2015) Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts. J Phys Chem C 119(46):25917–25928. doi:10.1021/acs.jpcc.5b07653

    Article  CAS  Google Scholar 

  24. Kramm UI, Herranz J, Larouche N, Arruda TM, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet J-P (2012) Structure of the catalytic sites in Fe/N/C-catalysts for O(2)-reduction in PEM fuel cells. Phys Chem Chem Phys: PCCP 14(33):11673–11688. doi:10.1039/c2cp41957b

    Article  CAS  Google Scholar 

  25. Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch J-P, Strasser P (2015) Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat Commun 6:8618. doi:10.1038/ncomms9618

    Article  CAS  Google Scholar 

  26. Roelfes G, Vrajmasu V, Chen K, Ho RYN, Rohde J-U, Zondervan C, la Crois RM, Schudde EP, Lutz M, Spek AL, Hage R, Feringa BL, Münck E, Que L (2003) End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Inorg Chem 42(8):2639–2653. doi:10.1021/ic034065p

    Article  CAS  Google Scholar 

  27. Türk K-K, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76. doi:10.1016/j.jelechem.2015.08.014

    Article  Google Scholar 

  28. Lattelais M, Bocquet ML (2015) Cycloaddition of metal porphines on metal-supported graphene: a computational study. J Phys Chem C 119(17):9234–9241. doi:10.1021/jp512247n

    Article  CAS  Google Scholar 

  29. You J-M, Han HS, Lee HK, Cho S, Jeon S (2014) Enhanced electrocatalytic activity of oxygen reduction by cobalt–porphyrin functionalized with graphene oxide in an alkaline solution. Int J Hydrog Energy 39(10):4803–4811. doi:10.1016/j.ijhydene.2014.01.107

    Article  CAS  Google Scholar 

  30. Liu Z, Anson FC (2000) Electrochemical properties of vanadium(III, IV, V)−salen complexes in acetonitrile. Four-electron reduction of O2 by V(III)−salen. Inorg Chem 39(2):274–280. doi:10.1021/ic990958z

    Article  CAS  Google Scholar 

  31. Kryatov SV, Taktak S, Korendovych IV, Rybak-Akimova EV, Kaizer J, Torelli S, Shan X, Mandal S, MacMurdo VL, Mairata i Payeras A, Que L (2005) Dioxygen binding to complexes with FeII2(μ-OH)2 cores: steric control of activation barriers and O2-adduct formation. Inorg Chem 44(1):85–99. doi:10.1021/ic0485312

    Article  CAS  Google Scholar 

  32. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55(22):6367–6375. doi:10.1016/j.electacta.2010.06.056

    Article  CAS  Google Scholar 

  33. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713. doi:10.1021/ja211433h

    Article  CAS  Google Scholar 

  34. Mo G, Liao S, Zhang Y, Zhang W, Ye J (2012) Synthesis of active iron-based electrocatalyst for the oxygen reduction reaction and its unique electrochemical response in alkaline medium. Electrochim Acta 76:430–439. doi:10.1016/j.electacta.2012.05.054

    Article  CAS  Google Scholar 

  35. Jiang L, Li M, Lin L, Li Y, He X, Cui L (2014) Electrocatalytic activity of metalloporphyrins grown in situ on graphene sheets toward oxygen reduction reaction in an alkaline medium. RSC Adv 4(51):26653–26661. doi:10.1039/C4RA02208D

    Article  CAS  Google Scholar 

  36. Liu K, Song Y, Chen S (2014) Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media. J Power Sources 268:469–475. doi:10.1016/j.jpowsour.2014.06.054

    Article  CAS  Google Scholar 

  37. Li M, Bo X, Zhang Y, Han C, Guo L (2014) Comparative study on the oxygen reduction reaction electrocatalytic activities of iron phthalocyanines supported on reduced graphene oxide, mesoporous carbon vesicle, and ordered mesoporous carbon. J Power Sources 264:114–122. doi:10.1016/j.jpowsour.2014.04.101

    Article  CAS  Google Scholar 

  38. Han J, Sa YJ, Shim Y, Choi M, Park N, Joo SH, Park S (2015) Coordination chemistry of [Co(acac)2] with N-doped graphene: implications for oxygen reduction reaction reactivity of organometallic Co–O4–N species. Angew Chem Int Ed 54(43):12622–12626. doi:10.1002/anie.201504707

    Article  CAS  Google Scholar 

  39. Fashedemi OO, Ozoemena KI (2015) Oxygen reduction reaction at MWCNT-modified nanoscale iron(ii) tetrasulfophthalocyanine: remarkable performance over platinum and tolerance toward methanol in alkaline medium. RSC Adv 5(29):22869–22878. doi:10.1039/C5RA03133H

    Article  CAS  Google Scholar 

  40. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  41. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824

    Article  Google Scholar 

  42. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  43. Wang X, Wang L, Zhao F, Hu C, Zhao Y, Zhang Z, Chen S, Shi G, Qu L (2015) Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale 7(7):3035–3042. doi:10.1039/C4NR05343E

    Article  CAS  Google Scholar 

  44. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35. doi:10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  45. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring–disk electrode study. J Electroanal Chem 495(2):134–145. doi:10.1016/S0022-0728(00)00407-1

    Article  CAS  Google Scholar 

  46. Palanivelu KM, Prabhakaran V, Ramani VK, Ramanujam K (2015) Controlling the nitrogen content of metal–nitrogen–carbon based non-precious-metal electrocatalysts via selenium addition. J Electrochem Soc 162(6):F475–F482. doi:10.1149/2.0101506jes

    Article  CAS  Google Scholar 

  47. Shi Z, Zhang J (2007) Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111(19):7084–7090. doi:10.1021/jp0671749

    Article  CAS  Google Scholar 

  48. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. http://www.nature.com/nmat/journal/v10/n10/abs/nmat3087.html#supplementary-information

  49. Wu G, Nelson M, Ma S, Meng H, Cui G, Shen PK (2011) Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 49(12)):3972–3982. doi:10.1016/j.carbon.2011.05.036

    Article  CAS  Google Scholar 

  50. Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim Acta 46(4):579–588. doi:10.1016/S0013-4686(00)00641-1

    Article  CAS  Google Scholar 

  51. Geniès L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44(8–9):1317–1327. doi:10.1016/S0013-4686(98)00254-0

    Article  Google Scholar 

  52. Gubbins KE, Walker RD (1965) The solubility and diffusivity of oxygen in electrolytic solutions. J Electrochem Soc 112(5):469–471. doi:10.1149/1.2423575

    Article  CAS  Google Scholar 

  53. Haynes WM, Lide DR (2011) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC, Boca Raton

    Google Scholar 

  54. Bonakdarpour A, Lefevre M, Yang R, Jaouen F, Dahn T, Dodelet J-P, Dahn JR (2008) Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem Solid-State Lett 11(6):B105–B108. doi:10.1149/1.2904768

    Article  CAS  Google Scholar 

  55. Griffith JS (1956) On the magnetic properties of some haemoglobin complexes. Proc R Soc Lond A: Math Phys Eng Sci 235(1200):23–36

    Article  CAS  Google Scholar 

  56. Pauling L (1964) Nature of the iron–oxygen bond in oxyhaemoglobin. Nature 203(4941):182–183

    Article  CAS  Google Scholar 

  57. Adzic R (1996) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, p 197–237

  58. Xia XH, Iwasita T, Ge F, Vielstich W (1996) Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim Acta 41(5):711–718. doi:10.1016/0013-4686(95)00360-6

    Article  CAS  Google Scholar 

  59. Kauranen PS, Skou E (1996) Mixed methanol oxidation/oxygen reduction currents on a carbon supported Pt catalyst. J Electroanal Chem 408(1996):189–198. doi:10.1016/0022-0728(96)04515-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kothandaraman Ramanujam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheelam, A., Mandal, S., Thippani, T. et al. Carbon-supported Co(III) dimer for oxygen reduction reaction in alkaline medium. Ionics 22, 2183–2194 (2016). https://doi.org/10.1007/s11581-016-1730-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1730-1

Keywords

Navigation