Skip to main content
Log in

Applications of the technique of solution aerosol thermolysis (SAT) in solid oxide fuel cell (SOFC) component fabrication

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The technique of solution aerosol thermolysis (SAT) for the production of components suitable for operation of solid oxide fuel cells (SOFC) is reviewed. Major advantages of the technique include its versatility, low cost, and control of the product stoichiometry at droplet level. Progress in understanding the major physicochemical parameters that play a role in final film morphology is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim

    Book  Google Scholar 

  2. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    Article  CAS  Google Scholar 

  3. Bagotsky VS (2009) Fuel cells problems and solutions. Wiley, New Jersey

    Google Scholar 

  4. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier Science, Amsterdam

    Google Scholar 

  5. Supramaniam Srinivasan, (2006) Fuel cells from fundamentals to applications. Springer, Science + Business Media, LLC, New York

  6. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, UK

    Google Scholar 

  7. Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J Mater Sci 36:1053–1068

    Article  CAS  Google Scholar 

  8. Aarva A, McPhail SJ, Moreno A (2009) In: Singhal SC, Yokokawa H (Ed), SOFC-XI ECS transactions 25. Issue 2:313–322

    Google Scholar 

  9. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131:79–96

    Article  CAS  Google Scholar 

  10. Gelfond NV et al. (2009) Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia. Inorg Mater 45:659–665

    Article  CAS  Google Scholar 

  11. Shim JH, Chao C-C, Huang H, Prinz FB (2007) Atomic layer deposition of Yttria stabilized zirconia for solid oxide fuel cells. Chem Mater 19:3850–3854

    Article  CAS  Google Scholar 

  12. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Materials today 17:236–246

    Article  CAS  Google Scholar 

  13. Courtin E et al. (2012) Optimized sol–gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24:4540–4548

    Article  CAS  Google Scholar 

  14. Choi J-J et al. (2011) Preparation and characterization of (La0.8Sr0.2)0.95MnO3−δ (LSM) thin films and LSM/LSCF interface for solid oxide fuel cells. J Am Ceram Soc 94:3340–3345

    Article  CAS  Google Scholar 

  15. Papastergiades E, Argyropoulos S, Rigakis N, Kiratzis NE (2009) Fabrication of ceramic electrolytic films by the method of solution aerosol thermolysis (SAT) for solid oxide fuel cells (SOFC). Ionics 15:545–554

    Article  CAS  Google Scholar 

  16. Huang H et al. (2007) High-performance ultrathin solid oxide fuel cells for low temperature operation. J Electrochem Soc 154:B20–B24

    Article  CAS  Google Scholar 

  17. Kuo Y-L, Chen Y-S, Lee C (2011) Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering: the O2/Ar flow ratio effect. J Eur Ceram Soc 31:3127–3135

    Article  CAS  Google Scholar 

  18. Nédélec R et al. (2012) Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering. J Power Sources 205:157–163

    Article  Google Scholar 

  19. Hidalgo H et al. (2013) Optimization of DC reactive magnetron sputtering deposition process for efficient YSZ electrolyte thin film SOFC. Fuel cells 13:279–288

    Article  CAS  Google Scholar 

  20. Heiroth S et al. (2010) Yttria-stabilized zirconia thin films by pulsed laser deposition: microstructural and compositional control. J Eur Ceram Soc 30:489–495

    Article  CAS  Google Scholar 

  21. Rodrigo K et al. (2007) Characterization of yttria-stabilized zirconia thin films grown by pulsed laser deposition (PLD) on various substrates. Appl Surf Sci 254:1338–1342

    Article  CAS  Google Scholar 

  22. Otani M et al. (2010) Fabrication of Gd0.5Sr0.5CoO3 film for SOFC cathode by pulsed laser deposition. Solid State Ionics 180:1667–1671

    Article  CAS  Google Scholar 

  23. S. C et al. (2011) High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim Acta 56:5472–5477

    Article  Google Scholar 

  24. Coddet P, Liao H, Coddet C (2014) A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies. Adv Manuf 2:212–221

    Article  CAS  Google Scholar 

  25. Tikkanen H et al. (2011) Examination of the co-sintering process of thin 8YSZ films obtained by dip-coating on in-house produced NiO–YSZ. J Eur Ceram Soc 31:1733–1739

    Article  CAS  Google Scholar 

  26. Hanifi AR et al. (2012) Development of monolithic YSZ porous and dense layers through multiple slip casting for ceramic fuel cell applications. Int J Appl Ceram Technol 9:1011–1021

    Article  CAS  Google Scholar 

  27. Zhitomirsky I, Petric A (2000) Electrophoretic deposition of ceramic materials for fuel cell applications. J Eur Ceram Soc 20:2055–2061

    Article  CAS  Google Scholar 

  28. Zou Y et al. (2011) Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. Int J Hydrog Energy 36:9195–9204

    Article  CAS  Google Scholar 

  29. Das D, Basu RN (2014) Electrophoretic deposition of zirconia thin film on nonconducting substrate for solid oxide fuel cell application. J Am Ceram Soc 97:3452–3457

    Article  CAS  Google Scholar 

  30. Schoonman J (2000) Nanostructured materials in solid state ionics. Solid State Ionics 135:5–19

    Article  CAS  Google Scholar 

  31. Lee S, Son T, Yun J, Kwon H, Messing GL, Jun B (2004) Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis. Mater Lett 58:2932–2936

    Article  CAS  Google Scholar 

  32. Messing GL, Zhang S-C, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76(11):2707–2726

    Article  CAS  Google Scholar 

  33. Viguìé JC, Spitz J (1975) Chemical vapor deposition at low temperatures. J Electrochem Soc 122:585–588

    Article  Google Scholar 

  34. Chamberlin RR, Skarman JS (1966) Chemical spray deposition process for inorganic films. J Electrochem Soc 113:86–89

    Article  CAS  Google Scholar 

  35. Hunt AT, Carter WB, Cochran JK Jr (1993) Combustion chemical vapor deposition: a novel thin-film deposition technique. Appl Phys Lett 63:266–268

    Article  CAS  Google Scholar 

  36. Choy KL, Charojrochkul S, Steele BCH (1997) Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique. Solid State Ionics 96:49–54

    Article  CAS  Google Scholar 

  37. Jayanthi GV, Zhang SC, Messing GL (1993) Modeling of solid particle formation during solution aerosol thermolysis. Aerosol Sci Technol 19:478–490

    Article  CAS  Google Scholar 

  38. Chopra KL, Kainthla RC, Pandya DK, and Thakoor AP (1982) Physics of thin films. In: Hass G, Francombe MH, Vossen JL (eds) Chemical solution deposition of inorganic films academic press Inc, New York, Vol.12 pp 168–172

  39. Beckel D, Dubach A, Studart AR, Gauckler LJ (2006) Spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes. J Electroceram 16:221–228

    Article  CAS  Google Scholar 

  40. Vasu V, Subrahmanyam A (1990) Reaction kinetics of the formation of indium tin oxide films grown by spray pyrolysis. Thin Solid Films 193(194):696–703

    Article  Google Scholar 

  41. Arya SPS, Hintermann HE (1990) Growth of Y–Ba–Cu–O superconducting thin films by ultrasonic spray pyrolysis. Thin Solid Films 193(194):841–846

    Article  Google Scholar 

  42. van Zomeren AA, Kelder EM, Marijnissen JCM, Schoonman J (1994) The production of thin films of LiMn2O4 by electrospraying. J Aerosol Sci 25(6):1229–1235

    Article  Google Scholar 

  43. Chen CH, Buysman AAJ, Kelder EM, Schoonman J (1995) Fabrication of LiCoO2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis. Solid State Ionics 80:1–4

    Article  CAS  Google Scholar 

  44. Chen CH, Yuan FL, Schoonman J (1998) Spray pyrolysis routes to electroceramic powders and thin films. Eur J Solid State Inorg Chem 35:189–196

    Article  CAS  Google Scholar 

  45. Taniguchi I, van Landschoot RC, Schoonman J (2003) Fabrication of La1–xSrxCo1–yFeyO3 thin films by electrostatic spray deposition. Solid State Ionics 156:1–13

    Article  CAS  Google Scholar 

  46. Taniguchi I, van Landschoot RC, Schoonman J (2003) Electrostatic spray deposition of Gd0.1Ce0.9O1.95 and La0.9Sr0.1Ga0.8Mg0.2O2.87 thin films. Solid State Ionics 160:271–279

    Article  CAS  Google Scholar 

  47. Lampkin CM (1979) Aerodynamics of nozzles used in spray pyrolysis. Prog Crystal Growth Charact 1:405–416

    Article  CAS  Google Scholar 

  48. See references [25, 27] as taken from Chopra KL, Kainthla RC, Pandya DK, and Thakoor AP (1982) Physics of thin films. In: Hass G, Francombe MH, Vossen JL (eds) Chemical solution deposition of inorganic films academic press Inc, New York, Vol.12 pp 168–232

  49. Chopra KL, Kainthla RC, Pandya DK, and Thakoor AP (1982) In: Hass G, Francombe MH, Vossen JL (eds) Physics of thin films, academic press Inc, New York, Vol.12 pp 178–192

  50. Muecke UP, Messing GL, Gauckler LJ (2009) The Leidenfrost effect during spray pyrolysis of nickel oxide-gadolinia doped ceria composite thin films. Thin Solid Films 517:1515–1521

    Article  CAS  Google Scholar 

  51. Choy KL (1995) Fabrication of ceramic coatings using flame assisted vapour deposition. In: Lee WE (ed) Brit. Ceram. Proc. No.54, The Institute of Materials, London, pp 65–74

  52. Charojrochkul S, Choy KL, Steele BCH (2004) Flame assisted vapour deposition of cathode for solid oxide fuel cells. 1. Microstructure control from processing parameters. J Eur Ceram Soc 24:2515–2526

    Article  CAS  Google Scholar 

  53. Perednis D, Wilhelm O, Pratsinis SE, Gauckler LJ (2005) Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis. Thin Solid Films 474:84–95

    Article  CAS  Google Scholar 

  54. Perednis D, Gauckler LJ (2004) Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics 166:229–239

    Article  CAS  Google Scholar 

  55. Choy K, Bai W, Charojrochkul S, Steele BCH (1998) The development of intermediate-temperature solid oxide fuel cells for the next millennium. J Power Sources 71:361–369

    Article  CAS  Google Scholar 

  56. Perednis D, Gauckler LJ (2005) Thin film deposition using spray pyrolysis. J Electroceram 14:103–111

    Article  CAS  Google Scholar 

  57. Chen C, Kelder EM, Schoonman J (1998) Effects of additives in electrospraying for materials preparation. J Eur Ceram Soc 18(10):1439–1443

    Article  CAS  Google Scholar 

  58. Kim S, Choi JH, Eun HJ, Kim HJ, Hwang CS (2000) Effects of additives on properties of MgO thin films by electrostatic spray deposition. Thin Solid Films 377:694–698

    Google Scholar 

  59. Aranovich J, Ortiz A, Bube RH (1979) Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications. J Vac Sci Technol 16:994–1003

    Article  CAS  Google Scholar 

  60. Chopra KL, Kainthla RC, Pandya DK, Thakoor AP (1982) In: Hass G, Francombe MH, Vossen JL (eds) Physics of thin films, academic press Inc, New York. Vol. 12:178–181

    Google Scholar 

  61. Hamedani HA et al. (2008) Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Mater Sci Eng B 153:1–9

    Article  CAS  Google Scholar 

  62. Sears WM, Gee MA (1988) Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films 165:265–277

    Article  CAS  Google Scholar 

  63. Choy KL, Su B (2001) Growth behavior and microstructure of CdS thin films deposited by an electrostatic spray assisted vapor deposition (ESAVD) process. Thin Solid Films 388:9–14

    Article  CAS  Google Scholar 

  64. Wiedmann I, Choy K-L and Derby B (1994) Flame-assisted deposition of lead titanate-based thin films: correlation of deposition process, microstructure and electrical properties. In: Brit. Ceram. Proc. No.53, The Institute of Materials, London, pp 133–141

  65. Vasu V, Subrahmanyam A (1990) Electrical and optical properties of sprayed SnO2 films: dependence on the oxiding agent in the starting material. Thin Solid Films 193(194):973–980

    Article  Google Scholar 

  66. Leong KH (1987) Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. J Aerosol Sci 18:511–524

    Article  CAS  Google Scholar 

  67. Leong KH (1987) Morphological control of particles generated from the evaporation of solution droplets: experiment. J Aerosol Sci 18:525–552

    Article  CAS  Google Scholar 

  68. Nesic S, Vodnic J (1991) Kinetics of droplet evaporation. Chem Eng Sci 46:527–537

    Article  CAS  Google Scholar 

  69. Scherer GW (1992) Crack-tip stress in gels. J Non-Cryst Solids 144:210–216

    Article  Google Scholar 

  70. See reference [47] of the review by Messing et al. [32]

  71. Fukui T, Oobuchi T, Ikuhara Y, Ohara S, Kodera K (1997) Synthesis of (La,Sr)MnO3–YSZ composite particles by spray pyrolysis. J Am Ceram Soc 80:261–263

    Article  CAS  Google Scholar 

  72. Heel A, Vital A, Holtappels P, Graule T (2009) Flame spray synthesis and characterisation of stabilised ZrO2 and CeO2 electrolyte nanopowders for SOFC applications at intermediate temperatures. J Electroceram 22:40–46

    Article  CAS  Google Scholar 

  73. Barringer EA, HK B (1982) Formation, packing, and sintering of monodisperse TiO2 powders. J. Am. Ceram. Soc 65:C-199–C-201

    Article  CAS  Google Scholar 

  74. Tian Y-L, Dewan HS, Brodwin ME and Johnson DL (1990) MICROWAVE SINTERING BEHAVIOR OF ALUMINA CERAMICS. In Handwerker C, Blendell J and Kaysser W (eds) Ceramic transactions, American ceramic society, Vol. 7 pp 391–401

  75. Slamovich EB and Lange FF (1988) Spherical zirconia particles via electrostatic atomization: fabrication and sintering characteristics. In Brinker CJ et al (eds) Materials research society symposium proceedings, better ceramics through chemistry III, Materials Research Society, Vol. 121 pp 257–262

  76. Niesen TP, Guire MRDE (2002) Review : deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ionics 151:61–68

    Article  CAS  Google Scholar 

  77. Setoguchi T, Sawano M, Eguchi K, Arai H (1990) Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC. Solid State Ionics 40(41):502–505

    Article  Google Scholar 

  78. Kelder EM, Nijs OCJ, Schoonman J (1994) Low-temperature synthesis of thin films of YSZ and BaCeO3using electrostatic spray pyrolysis (ESP). Solid State Ionics 68:5–7

    Article  CAS  Google Scholar 

  79. Stelzer NHJ, Schoonman J (1996) Synthesis of terbia-doped Yttria-stabilized zirconia thin films by electrostatic spray deposition (ESD) J. Mater Synth Process 4(6):429–438

    CAS  Google Scholar 

  80. Jadhav LD et al. (2012) Synthesis and characterization of YSZ by spray pyrolysis technique. Appl Surf Sci 258:9501–9504

    Article  CAS  Google Scholar 

  81. Halmenschlager CM et al. (2013) Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film. Mater Res Bull 48:207–213

    Article  CAS  Google Scholar 

  82. Reolon RP et al. (2014) Electrochemical performance of gadolinia-doped ceria (CGO) electrolyte thin films for ITSOFC deposited by spray pyrolysis. J. Power Sour 261:348–355

    Article  CAS  Google Scholar 

  83. Chourashiya MG, Jadhav LD (2011) Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC. Int. J. Hydrogen energy 36:14984–14995

    Article  CAS  Google Scholar 

  84. Van Gestel T, Sebold D, Buchkremer HP (2015) Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. J Eur Ceram Soc 35:1505–1515

    Article  Google Scholar 

  85. Rupp JLM, Drobek T, Rossi A, Gauckler LJ (2007) Chemical analysis of spray pyrolysis Gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells. Chem Mater 19:1134–1142

    Article  CAS  Google Scholar 

  86. Scherrer B et al. (2012) Microstructures of YSZ and CGO thin films deposited by spray pyrolysis: influence of processing parameters on the porosity. Adv Funct Mater 22:3509–3518

    Article  CAS  Google Scholar 

  87. Tsoga A, Naoumidis A, Stöver D (2000) Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions. Solid State Ionics 135:403–409

    Article  CAS  Google Scholar 

  88. Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionics 148:27–34

    Article  Google Scholar 

  89. Marina OA, Bagger C, Primdahl S, Mogensen M (1999) A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123:199–208

    Article  CAS  Google Scholar 

  90. Ruiz-Morales JC et al. (2007) LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. J Eur Ceram Soc 27:4223–4227

    Article  CAS  Google Scholar 

  91. Stoermer AO, Rupp JLM, Gauckler LJ (2006) Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC. Solid State Ionics 177:2075–2079

    Article  CAS  Google Scholar 

  92. Sahibzada M et al. (1996) Investigations on intermediate temperature (500–650 °C) PEN structures incorporating Ce(Gd)O2-x electrolytes. In: Thorsensen B (ed) Proceedings of the 2nd European solid oxide fuel cell forum. European Solid Oxide Fuel Cell Forum, Switzerland, pp. 687–696

    Google Scholar 

  93. Beckel D et al. (2007) Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics 178:407–415

    Article  CAS  Google Scholar 

  94. Marrero-López D et al. (2014) Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3–δ cathode prepared by conventional spray-pyrolysis. J Power Sources 255:308–317

    Article  Google Scholar 

  95. Hsu CS, Hwang BH (2006) Microstructure and properties of the La0.6Sr0.4Co0.2Fe0.8O3 cathodes prepared by electrostatic-assisted ultrasonic spray pyrolysis method. J Electrochem Soc 153:A1478

    Article  CAS  Google Scholar 

  96. Chang C-L, Hsu C-S, Hwang B-H (2008) Unique porous thick Sm0.5Sr0.5CoO3 solid oxide fuel cell cathode films prepared by spray pyrolysis. J Power Sources 179:734–738

    Article  CAS  Google Scholar 

  97. Marrero-López D et al. (2014) Stability and performance of nanostructured La0.8Sr0.2MnO3 cathodes deposited by spray-pyrolysis. Electrochim Acta 134:159–166

    Article  Google Scholar 

  98. Angoua BF, Slamovich EB (2012) Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3–δ–Ce0.8Gd0.2O1.9 (LSCF–CGO) thin film cathodes. Solid State Ionics 212:10–17

    Article  CAS  Google Scholar 

  99. Angoua BF et al., (2011) Crystallization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3– δ–Ce0.8Gd0.2O1.9 thin film cathodes processed by single solution spray pyrolysis. Solid State Ionics doi:10.1016/j.ssi.2011.08.017

  100. Silva PLB et al. (2015) Low temperature synthesis by spray pyrolysis of La0.9Sr0.1Co0.2Fe0.8O3 thin films using ethanol and water as a solvent and their microstructural characterization. Ceramics International 41:13304–13309

    Article  CAS  Google Scholar 

  101. Fukui T, Ohara S, Naito M, Nogi K (2003) Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis. Powder Technol 132:52–56

    Article  CAS  Google Scholar 

  102. Hwang B-H et al. (2007) Electrostatic spray deposition of NiO/CGO films. J Phys D Appl Phys 40:3448–3455

    Article  CAS  Google Scholar 

  103. Chen J-C et al. (2007) Deposition of Ni-CGO composite anodes by electrostatic assisted ultrasonic spray pyrolysis method. Mater Res Bull 42:1674–1682

    Article  CAS  Google Scholar 

  104. Chen J-H, Hwang B-H (2008) Microstructure and properties of the Ni-CGO composite anodes prepared by the electrostatic-assisted ultrasonic spray pyrolysis method. J Am Ceram Soc 91:97–102

    Article  CAS  Google Scholar 

  105. Liu L, Kim G-Y, Chandra A (2010) Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis. J Power Sources 195:7046–7053

    Article  CAS  Google Scholar 

  106. Liu L et al. (2011) Microstructural and electrochemical impedance study of nickel Ce0.9Gd0.1O1.95 anodes for solid oxide fuel cells fabricated by ultrasonic spray pyrolysis. J Power Sources 196:3026–3032

    Article  CAS  Google Scholar 

  107. Liu L et al. (2012) Modeling of Ni–CGO anode in a solid oxide fuel cell deposited by spray pyrolysis. J Power Sources 210:129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the European Union (European Social Fund ESF) and Greek National funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund. The help of G. Tsimekas (PhD candidate at the Department of Chemistry, University of St. Andrews) with literature search is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kiratzis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiratzis, N.E. Applications of the technique of solution aerosol thermolysis (SAT) in solid oxide fuel cell (SOFC) component fabrication. Ionics 22, 751–770 (2016). https://doi.org/10.1007/s11581-016-1704-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1704-3

Keywords

Navigation