Skip to main content
Log in

Glycerol oxidation reaction using PdAu/C electrocatalysts

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Glycerol oxidation reactions were evaluated using PdAu/C electrocatalysts under alkaline conditions. These electrocatalysts were synthesized in different ratios (100:0, 75:25, 50:50, 25:75, and 0:100), using the borohydride reduction method. The materials were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical techniques associated by in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). According to the XRD diffractograms, the presence of Pd and Au (face-centered cubic (fcc)) phases and Pd-Au (fcc) alloys were detected. Cyclic voltammetry assisted by ATR-FTIR in situ and chronoamperometry experiments revealed that the addition of Au remarkably enhances the electrocatalytic activity, due to the action of bifunctional effect, with addition of the interactions of alcohoxide with hydroxylate species in gold surface, and the stability of Pd/C catalysts. Highest current density (≈4 mA mgmetal −1) was achieved for the catalyst Pd50Au50/C and Pd75Au25/C, which is two times higher than that achieved by Pd/C (2 mA mgmetal −1), demonstrating the beneficial effect of the PdAu alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rodriguez AA, Williams CT, Monnier JR (2014) Selective liquid-phase oxidation of glycerol over Au–Pd/C bimetallic catalysts prepared by electroless deposition. Appl Catal A 475:161–168. doi:10.1016/j.apcata.2014.01.011

    Article  CAS  Google Scholar 

  2. Lam BTX, Chiku M, Higuchi E, Inoue H (2015) Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium. J Power Sources 297:149–157. doi:10.1016/j.jpowsour.2015.07.086

    Article  CAS  Google Scholar 

  3. Han X, Chadderdon DJ, Qi J, Xin L, Li W, Zhou W (2014) Numerical analysis of anion-exchange membrane direct glycerol fuel cells under steady state and dynamic operations. Int J Hydrogen Energy 39(34):19767–19779. doi:10.1016/j.ijhydene.2014.08.144

    Article  CAS  Google Scholar 

  4. Zhang Z, Xin L, Li W (2012) Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals. Appl Catal B 119–120:40–48. doi:10.1016/j.apcatb.2012.02.009

    Article  Google Scholar 

  5. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim Acta 128:279–286. doi:10.1016/j.electacta.2013.10.194

    Article  CAS  Google Scholar 

  6. Zhang Z, Xin L, Qi J, Chadderdon DJ, Li W (2013) Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Appl Catal B 136–137:29–39. doi:10.1016/j.apcatb.2013.01.045

    Google Scholar 

  7. Fernández PS, Martins ME, Camara GA (2012) New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim Acta 66:180–187

    Article  Google Scholar 

  8. Ferreira RS Jr, Janete Giz M, Camara GA (2013) Influence of the local pH on the electrooxidation of glycerol on palladium–rhodium electrodeposits. J Electroanal Chem 697:15–20. doi:10.1016/j.jelechem.2013.03.007

    Article  CAS  Google Scholar 

  9. Rostami H, Omrani A, Rostami AA (2015) On the role of electrodeposited nanostructured Pd–Co alloy on Au for the electrocatalytic oxidation of glycerol in alkaline media. Int J Hydrogen Energy 40(30):9444–9451. doi:10.1016/j.ijhydene.2015.05.154

    Article  CAS  Google Scholar 

  10. Ottoni CA, da Silva SG, De Souza RFB, Neto AO (2015) PtAu electrocatalyst for glycerol oxidation reaction using a ATR-FTIR/single direct alkaline glycerol/air cell in situ study. Electrocatalysis. doi:10.1007/s12678-12015-10277-12677

    Google Scholar 

  11. Mao H, Wang L, Zhu P, Xu Q, Li Q (2014) Carbon-supported PdSn–SnO2 catalyst for ethanol electro-oxidation in alkaline media. Int J Hydrogen Energy 39(31):17583–17588. doi:10.1016/j.ijhydene.2014.08.079

    Article  CAS  Google Scholar 

  12. Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK (2013) Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes. J Electroanal Chem 692:26–30. doi:10.1016/j.jelechem.2012.12.010

    Article  CAS  Google Scholar 

  13. Simões M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B 93(3–4):354–362. doi:10.1016/j.apcatb.2009.10.008

    Article  Google Scholar 

  14. Fontes EH, Piasentin RM, Ayoub JMS, da Silva JCM, Assumpção MHMT, Spinacé EV, Neto AO, de Souza RFB (2015) Electrochemical and in situ ATR-FTIR studies of ethanol electro-oxidation in alkaline medium using PtRh/C electrocatalysts. Mater Renew Sustain Energy 4(1):1–10. doi:10.1007/s40243-015-0043-z

    Article  Google Scholar 

  15. Xu JB, Zhao TS, Shen SY, Li YS (2010) Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int J Hydrogen Energy 35(13):6490–6500. doi:10.1016/j.ijhydene.2010.04.016

    Article  CAS  Google Scholar 

  16. Munoz F, Hua C, Kwong T, Tran L, Nguyen TQ, Haan JL (2015) Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell. Appl Catal B 174:323–328. doi:10.1016/j.apcatb.2015.03.027

    Article  Google Scholar 

  17. Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochim Acta 55(28):9179–9184. doi:10.1016/j.electacta.2010.09.018

    Article  CAS  Google Scholar 

  18. Brandalise M, Tusi MM, Piasentin RM, Santos MCD, Spinacé EV, Neto AO (2012) Synthesis of PdAu/C and PdAuBi/C electrocatalysts by borohydride reduction method for ethylene glycol electro-oxidation in alkaline medium. Int J Electrochem Sci 7(10):9609–9621

    CAS  Google Scholar 

  19. Kwon Y, Lai SCS, Rodriguez P, Koper MTM (2011) Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J Am Chem Soc 133(18):6914–6917. doi:10.1021/ja200976j

    Article  CAS  Google Scholar 

  20. Nandenha J, De Souza RFB, Assumpcao MHMT, Spinace EV, Neto AO (2013) Preparation of PdAu/C-Sb2O5 center dot SnO2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell. Ionics 19(9):1207–1213. doi:10.1007/s11581-013-0955-5

    Article  CAS  Google Scholar 

  21. Neto AO, Nandenha J, De Souza RFB, Buzzo GS, Silva JCM, Spinacé EV, Assumpção MHMT (2014) Anodic oxidation of formic acid on PdAuIr/C-Sb2O5 · SnO2 electrocatalysts prepared by borohydride reduction. J Fuel Chem Technol 42(7):851–857. doi:10.1016/S1872-5813(14)60037-2

    Article  CAS  Google Scholar 

  22. Neto AO, Brandalise M, Dias RR, Ayoub JMS, Silva AC, Penteado JC, Linardi M, Spinacé EV (2010) The performance of Pt nanoparticles supported on Sb2O5.SnO2, on carbon and on physical mixtures of Sb2O5.SnO2 and carbon for ethanol electro-oxidation. Int J Hydrogen Energy 35(17):9177–9181. doi:10.1016/j.ijhydene.2010.06.028

    Article  Google Scholar 

  23. Silva JCM, Parreira LS, De Souza RFB, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2011) PtSn/C alloyed and non-alloyed materials: differences in the ethanol electro-oxidation reaction pathways. Appl Catal B 110:141–147

    Article  CAS  Google Scholar 

  24. De Souza RFB, Silva JCM, Simoes FC, Calegaro ML, Neto AO, Santos MC (2012) New approaches for the ethanol oxidation reaction of Pt/C on carbon cloth using ATR-FTIR. Int J Electrochem Sci 7(6):5356–5366

    Google Scholar 

  25. Henrique RS, De Souza RFB, Silva JCM, Ayoub JMS, Piasentin RM, Linardi M, Spinacé EV, Santos MC, Neto AO (2012) Preparation of Pt/C-In 2O 3.SnO 2 electrocatalysts by borohydride reduction process for ethanol electro-oxidation. Int J Electrochem Sci 7(3):2036–2046

    CAS  Google Scholar 

  26. Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J Catal 250(1):94–101. doi:10.1016/j.jcat.2007.06.001

    Article  CAS  Google Scholar 

  27. Modibedi RM, Masombuka T, Mathe MK (2011) Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int J Hydrogen Energy 36(8):4664–4672. doi:10.1016/j.ijhydene.2011.01.028

    Article  CAS  Google Scholar 

  28. Wang H, Liu Z, Ji S, Wang K, Zhou T, Wang R (2013) Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochim Acta 108:833–840

    Article  CAS  Google Scholar 

  29. Pawley GS (1981) Unit-cell refinement from powder diffractions scans. J Appl Crystallogr 14:357–361. doi:10.1107/s0021889881009618

    Article  CAS  Google Scholar 

  30. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. doi:10.1107/s0021889810030499

    Article  CAS  Google Scholar 

  31. Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P (2012) Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts. Electrochim Acta 66:295–301. doi:10.1016/j.electacta.2012.01.096

    Article  CAS  Google Scholar 

  32. Jeffery DZ, Camara GA (2010) The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem Commun 12(8):1129–1132. doi:10.1016/j.elecom.2010.06.001

    Article  CAS  Google Scholar 

  33. Cai J, Ma H, Zhang J, Du Z, Huang Y, Gao J, Xu J (2014) Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions. Chin J Catal 35(10):1653–1660. doi:10.1016/S1872-2067(14)60132-7

    Article  CAS  Google Scholar 

  34. Schnaidt J, Heinen M, Denot D, Jusys Z, Jürgen Behm R (2011) Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions. J Electroanal Chem 661(1):250–264. doi:10.1016/j.jelechem.2011.08.011

    Article  CAS  Google Scholar 

  35. Simões M, Baranton S, Coutanceau C (2011) Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl Catal B 110:40–49. doi:10.1016/j.apcatb.2011.08.020

    Article  Google Scholar 

  36. Martins CA, Giz MJ, Camara GA (2011) Generation of carbon dioxide from glycerol: evidences of massive production on polycrystalline platinum. Electrochim Acta 56(12):4549–4553. doi:10.1016/j.electacta.2011.02.076

    Article  CAS  Google Scholar 

  37. Neto AO, Nandenha J, Assumpção MHMT, Linardi M, Spinacé EV, de Souza RFB (2013) In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup. Int J Hydrogen Energy 38(25):10585–10591. doi:10.1016/j.ijhydene.2013.06.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (150111/2015-0), FAPESP (2014/09087-4) and CAPES for the financial support and CCTM from IPEN/CNEN-SP for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Angélica Ottoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottoni, C.A., da Silva, S.G., De Souza, R.F.B. et al. Glycerol oxidation reaction using PdAu/C electrocatalysts. Ionics 22, 1167–1175 (2016). https://doi.org/10.1007/s11581-015-1631-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1631-8

Keywords

Navigation