Skip to main content
Log in

Activated carbon from coconut leaves for electrical double-layer capacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study investigates the potential of coconut leaves as a precursor to obtain activated carbon. Coconut leaf-activated carbon (CLAC) has been prepared through gas activation process starting with carbonization at 400 °C in nitrogen flow for 3 h. The carbonized coconut leaves were milled using planetary ball milling followed by activation with carbon dioxide (CO2) at different temperatures ranging from 700 to 1000 °C. The Brunauer–Emmett–Teller (BET) characterization reveals that the surface area of CLACs increases with the increase in activation temperature. Electrodes prepared from CLACs have been used to fabricate electrochemical double-layer capacitors (EDLCs) in order to study the electrochemical behavior using galvanostatic charge–discharge measurements and cyclic voltammetry. The carbon activated at 900 °C delivered the best specific capacitance of 133.4 F/g at current density of 200 mA/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu D, Shen J, Liu N, Yang H, Du A (2013) Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors. Electrochim Acta 89:571–576

    Article  CAS  Google Scholar 

  2. Lee S-Y, Park S-J (2013) Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride). J Solid State Chem 207:158–162

    Article  CAS  Google Scholar 

  3. Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y (2010) Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 195(7):2118–2124

    Article  CAS  Google Scholar 

  4. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z, Lu G-Q (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102(2):1118–23

    Article  CAS  Google Scholar 

  5. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C (2012) Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol 111:185–90

    Article  CAS  Google Scholar 

  6. Yang J, Qiu K (2011) Development of high surface area mesoporous activated carbons from herb residues. Chem Eng J 167(1):148–154

    Article  CAS  Google Scholar 

  7. Du S-H, Wang L-Q, Fu X-T, Chen M-M, Wang C-Y (2013) Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Bioresour Technol 139:406–9

    Article  CAS  Google Scholar 

  8. Zhao S, Wang C-Y, Chen M-M, Wang J, Shi Z-Q (2009) Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. J Phys Chem Solids 70(9):1256–1260

    Article  CAS  Google Scholar 

  9. Kim Y-J, Lee B-J, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M (2006) Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon N Y 44(8):1592–1595

    Article  CAS  Google Scholar 

  10. Ismanto AE, Wang S, Soetaredjo FE, Ismadji S (2010) Preparation of capacitor’s electrode from cassava peel waste. Bioresour Technol 101(10):3534–40

    Article  CAS  Google Scholar 

  11. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45

    Article  CAS  Google Scholar 

  12. Jisha MR, Hwang YJ, Shin JS, Nahm KS, Prem Kumar T, Karthikeyan K, Dhanikaivelu N, Kalpana D, Renganathan NG, Stephan AM (2009) Electrochemical characterization of supercapacitors based on carbons derived from coffee shells. Mater Chem Phys 115(1):33–39

    Article  CAS  Google Scholar 

  13. Thomas GV, Prabhu SR, Reeny MZ, Bopaiah BM (1998) Evaluation of lignocellulosic biomass from coconut palm as substrate for cultivation of Pleurotus sajor-caju (Fr.) Singer. World J Microbiol Biotechnol 14(6):879–882

    Article  Google Scholar 

  14. Arsene MA, Bilba KB, Savastano H, Ii J (2014) Treatments of non-wood plant fibres used as reinforcement in composite materials. Mater Res 16(4):1–21

    Google Scholar 

  15. Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89(3):335–340

    Article  CAS  Google Scholar 

  16. Xiao B, Sun X, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319

    Article  CAS  Google Scholar 

  17. Jerry Antal M Jr (1985) Biomass pyrolysis: a review of the literature part 1—carbohydrate pyrolysis. In: Böer KW, Duffie JA (eds) Advances in solar energy. Springer, New York, pp 61–111

    Google Scholar 

  18. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite☆. Fuel 82(15–17):1949–1960

    Article  CAS  Google Scholar 

  19. Pino MR, Teresa Izquierdo M, de Yuso AM, Begoña R (2011) Conversion of almond shell to activated carbons: methodical study of the chemical activation based on an experimental design and relationship with their characteristics. Biomass Bioenergy 35(3):1235–1244

    Article  Google Scholar 

  20. Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349

    Article  CAS  Google Scholar 

  21. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88(2):772–779

    Article  CAS  Google Scholar 

  22. Mulinari DR, Baptista CARP, Souza JVC, Voorwald HJC (2011) Mechanical properties of coconut fibers reinforced polyester composites. Procedia Eng 10:2074–2079

    Article  CAS  Google Scholar 

  23. Ci L, Wei B, Xu C, Liang J, Wu D, Xie S, Zhou W, Li Y, Liu Z, Tang D (2001) Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J Cryst Growth 233(4):823–828

    Article  CAS  Google Scholar 

  24. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. San Diego, Academic Press

  25. Yang K, Peng J, Xia H, Zhang L, Srinivasakannan C, Guo S (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J Taiwan Inst Chem Eng 41(3):367–372

    Article  CAS  Google Scholar 

  26. Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255(20):8443–8449

    Article  CAS  Google Scholar 

  27. Mitra S, Sampath S (2004) Electrochemical capacitors based on exfoliated graphite electrodes. Electrochem Solid-State Lett 7(9):A264–A268

    Article  CAS  Google Scholar 

  28. Liu Y, Hu Z, Xu K, Zheng X, Gao Q (2008) Surface modification and performance of activated carbon electrode material. Acta Physico-Chimica Sin 24(7):1143–1148

    Article  CAS  Google Scholar 

  29. Liu N, Shen J, Liu D (2013) Activated high specific surface area carbon aerogels for EDLCs. Microporous Mesoporous Mater 167:176–181

    Article  CAS  Google Scholar 

  30. Xu B, Wu F, Chen S, Zhang C, Cao G, Yang Y (2007) Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim Acta 52(13):4595–4598

    Article  CAS  Google Scholar 

  31. Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2005) Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J Power Sources 144(1):302–309

    Article  CAS  Google Scholar 

  32. Álvarez S, Blanco-López MC, Miranda-Ordieres AJ, Fuertes AB, Centeno TA (2005) Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon N Y 43(4):866–870

    Article  Google Scholar 

  33. Farma R, Deraman M, Talib IA, Omar R, Manjunatha JG, Ishak MM (2013) Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int J Electrochem Sci 8:257–273

    CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge AMREC, SIRIM Berhad for providing access to research facilities where all experiments and measurements in this work were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, K.S., Mat, A. & Arof, A.K. Activated carbon from coconut leaves for electrical double-layer capacitor. Ionics 22, 911–918 (2016). https://doi.org/10.1007/s11581-015-1594-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1594-9

Keywords

Navigation