Skip to main content
Log in

High-performance porous spherical cathode materials based on CaCO3-template synthesis of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The porous spherical LiNi1/3Co1/3Mn1/3O2 has been synthesized using CaCO3-template and a conventional solid-state reaction. The physical and electrochemical properties of the materials are examined by many characterizations including XRD, SEM, EDS, BET, CV, EIS, and galvanostatic charge–discharge cycling. The results indicate that the as-synthesized materials prepared by this new method own a well-ordered layered α-NaFeO2 structure (space group: R-3m (166)). And massively porous channels could be observed in the spherical LiNi1/3Co1/3Mn1/3O2. Compared with the firm-surface spherical LiNi1/3Co1/3Mn1/3O2, the porous spherical material exhibits larger specific surface area and superior electrochemical performances. It delivers a higher initial capacity of 164.0 mAh g−1 at 0.1 C (1 C = 180 mA g−1) between 2.7 and 4.3 V, and 93.5 mAh g−1 is still respectively reached at 20 C. After 100 charge–discharge cycles at 1 C in the range of 2.7–4.3 V, the capacity retention is 95.1 %, indicating excellent cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hyung Choi I, Min Choi J, Ju Hwang Y, Aravindan V, Sung Lee Y, Suk Nahm K (2014) Influence of dilution effect on the electrochemical performance of integrated 0.5Li(Mn1.5Ni0.5)O4 · 0.5(Li2MnO3–Li(Mn0.5Ni0.5)O2) cathodes. Ceram Int 408:13033–13039

    Article  Google Scholar 

  2. Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ (2014) Understanding the rate capability of high-energy-density Li-rich layered li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 45:1–11

    Google Scholar 

  3. Sun YK, Kang HB, Myung ST, Prakash J (2010) Effect of manganese content on the electrochemical and thermal stabilities of Li[Ni0.58Co0.28−x Mn0.14+x ]O2 cathode materials for lithium-ion batteries. J Electrochem Soc 15712:A1335–A1340

    Article  Google Scholar 

  4. Jiang KC, Xin S, Lee JS, Kim J, Xiao XL, Guo YG (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 148:2934–2939

    Article  Google Scholar 

  5. Liang L, Du K, Peng Z, Cao Y, Duan J, Jiang J, Hu G (2014) Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta 130:82–89

    Article  CAS  Google Scholar 

  6. Ou QZ, Tang Y, Zhong YJ, Guo XD, Zhong BH, Heng L, Chen MZ (2014) Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol–gel combustion method. Electrochim Acta 137:489–496

    Article  CAS  Google Scholar 

  7. Yang S, Chen J, Liu Y, Yi B (2014) Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. J Mater Chem A 224:9322–9330

    Article  Google Scholar 

  8. Noh H-J, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  9. Xu Z, Xiao L, Wang F, Wu K, Zhao L, Li MR, Zhang HL, Wu Q, Wang J (2014) Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1−xy Co x Mn y )O2 cathode materials. J Power Sources 248:180–189

    Article  CAS  Google Scholar 

  10. Yang S, Wang X, Chen Q, Yang X, Li J, Wei Q (2011) Effects of complexants on [Ni1/3Co1/3Mn1/3]CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2. J Solid State Electrochem 162:481–490

    Google Scholar 

  11. Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 26:1249–1260

    Article  Google Scholar 

  12. Yang Z, Lu J, Bian D, Zhang W, Yang X, Xia J, Chen G, Gu H, Ma G (2014) Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries. J Power Sources 272:144–151

    Article  CAS  Google Scholar 

  13. He P, Wang H, Qi L, Osaka T (2006) Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2 and with different synthesis conditions. J Power Sources 1601:627–632

    Article  Google Scholar 

  14. Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo XD, Zhong B, Wang YJ, Wang X (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans 4339:14824–14832

    Article  Google Scholar 

  15. Weng Y, Xu S, Huang G, Jiang C (2013) Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1−x)Mg x O2 prepared from spent lithium ion batteries. J Hazard Mater 246–247:163–172

    Article  Google Scholar 

  16. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 613:10330–10341

    Article  Google Scholar 

  17. Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27

    Article  CAS  Google Scholar 

  18. Yao Y, Liu H, Li G, Peng H, Chen K (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Electrochim Acta 113:340–345

    Article  CAS  Google Scholar 

  19. Shi H, Wang X, Hou P, Zhou E, Guo J, Zhang J, Wang D, Guo F, Song D, Shi X, Zhang L (2014) Core–shell structured Li[(Ni0.8Co0.1Mn0.1)0.7(Ni0.45Co0.1Mn0.45)0.3]O2 cathode material for high-energy lithium ion batteries. J Alloy Compd 587:710–716

    Article  CAS  Google Scholar 

  20. Liang LW, Du K, Peng ZD, Cao YB, Hu GR (2014) Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries. Chin Chem Lett 256:883–886

    Article  Google Scholar 

  21. Huang Z-D, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 2129:10777–10784

    Article  Google Scholar 

  22. Kim KJ, Jo YN, Lee WJ, Subburaj T, Prasanna K, Lee CW (2014) Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2. J Power Sources 268:349–355

    Article  CAS  Google Scholar 

  23. Hu M, Tian Y, Wei J, Wang D, Zhou Z (2014) Porous hollow LiCoMnO4 microspheres as cathode materials for 5 V lithium ion batteries. J Power Sources 247:794–798

    Article  CAS  Google Scholar 

  24. Zhang L, Borong W, Ning L, Feng W (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74

    Article  CAS  Google Scholar 

  25. Yao Y, Liu H, Li G, Peng H, Chen K (2014) Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater Chem Phys 1432:867–872

    Article  Google Scholar 

  26. Penki TR, Shanmughasundaram D, Munichandraiah N (2014) Porous lithium rich Li1.2Mn0.54Ni0.22Fe0.04O2 prepared by microemulsion route as a high capacity and high rate capability positive electrode material. Electrochim Acta 143:152–160

    Article  CAS  Google Scholar 

  27. Xiong W, Jiang Y, Yang Z, Li D, Huang Y (2014) High-performance hierarchical LiNi1/3Mn1/3Co1/3O2 microspheres synthesized via a facile template-sacrificial route. J Alloy Compd 589:615–621

    Article  CAS  Google Scholar 

  28. Li J, Cao C, Xu X, Zhu Y, Yao R (2013) LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J Mater Chem A 138:11848–11852

    Article  Google Scholar 

  29. Massoni N, Le Gallet S, Hoffmann S, Launeau P, Grin Y, Bernard F (2015) Sintering of synthetic barytocalcite BaCa(CO3)2, kutnahorite CaMn(CO3)2 and rhodochrosite MnCO3 for carbon-14 sequestration. J Eur Ceram Soc 351:297–308

    Article  Google Scholar 

  30. He YS, Ma ZF, Liao XZ, Jiang Y (2007) Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method. J Power Sources 1632:1053–1058

    Article  Google Scholar 

  31. Huang X, Wang M, Che R (2014) Modulating the Li+/Ni2+ replacement and electrochemical performance optimizing of layered lithium-rich Li1.2Ni0.2Mn0.6O2 by minor Co dopant. J Mater Chem A 225:9656–9665

    Article  Google Scholar 

  32. Deng C, Zhang S, Wu B, Yang SY, Li HQ (2009) Synthesis and characteristics of nanostructured Li(Co1/3Ni1/3Mn1/3)O2 cathode material prepared at 0 °C. J Solid State Electrochem 145:871–875

    Google Scholar 

  33. Oljaca M, Blizanac B, Du Pasquier A, Sun Y, Bontchev R, Suszko A, Wall R, Koehlert K (2014) Novel Li(Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteries. J Power Sources 248:729–738

    Article  CAS  Google Scholar 

  34. Hua WB, Guo XD, Zheng Z, Wang YJ, Zhong BH, Fang B, Wang JZ, Chou SL, Liu H (2015) Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J Power Sources 275:200–206

    Article  CAS  Google Scholar 

  35. Huang ZD, Liu XM, Zhang B, Oh SW, Ma PC, Kim JK (2011) LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure: a high-power cathode material for rechargeable Li-ion batteries. Scr Mater 642:122–125

    Article  Google Scholar 

  36. Wu SL, Zhang W, Song X, Shukla AK, Liu G, Battaglia V, Srinivasan V (2012) High rate capability of Li(Ni1∕3Mn1∕3Co1∕3)O2 electrode for li-ion batteries. J Electrochem Soc 1594:A438–A444

    Article  Google Scholar 

  37. Gao P, Yang G, Liu H, Wang L, Zhou H (2012) Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics 207:50–56

    Article  CAS  Google Scholar 

  38. Yin K, Fang W, Zhong B, Guo X, Tang Y, Nie X (2012) The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method. Electrochim Acta 85:99–103

    Article  CAS  Google Scholar 

  39. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 1407:1862–1870

    Article  Google Scholar 

  40. Liu X, Li H, Li D, Ishida M, Zhou H (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J Power Sources 2430:374–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Liu or BenHe Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, Z., Hua, W. et al. High-performance porous spherical cathode materials based on CaCO3-template synthesis of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. Ionics 21, 3151–3158 (2015). https://doi.org/10.1007/s11581-015-1501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1501-4

Keywords

Navigation