Skip to main content
Log in

Electrical characterization of porous La-doped BaSnO3 using impedance spectroscopy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A few compositions in the system Ba1 − x La x SnO3 (x = 0.00, 0.01, 0.05, and 0.10) have been synthesized via the solid state ceramic route. The synthesized powders have been characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, Raman spectroscopy, Fourier transformation infrared, thermogravimetrical analysis, and differential thermal analysis techniques. The powder X-ray diffraction pattern of the samples confirms the formation of a single-phase solid solution only up to 0.50 ≤ x. It was found that all the samples have a cubic crystal structure. The electrical properties of La-modified BaSnO3 were studied using ac impedance spectroscopy technique over a wide range of temperatures (50–650 °C) in the frequency range of 10 Hz–13 MHz. The complex impedance plots above 300 °C show that total impedance is due to the contributions of grain and grain boundaries. The resistance of these contributions has been determined. Variation of these resistances with temperature shows the presence of two different regions with different slopes. The nature of the variation of conductivity of the grain and grain boundaries is different in different regions. Based on the value of activation energy, it is proposed that conduction via hopping of doubly ionized oxygen vacancies (VO ••) is taking place in the temperature region of 300–450 °C, whereas in the temperature region of 450–650 °C, it is due to proton, i.e., OH ions, hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vivekanandan R, Kutty TRN (1990) Grain boundary layer ceramic capacitors based on donor-doped Ba(Ti1−xSnx)O. Mater Sci Eng B 6:221–231

    Article  Google Scholar 

  2. Zhou ZG, Zhao G, Wei M, Zhang ZT (1989) Temperature–humidity–gas multifunctional sensitive ceramics. Sensors Actuators 19:71–81

    Article  CAS  Google Scholar 

  3. Singh P, Brandenburg BJ, Sebastian CP, Singh P, Singh S, Kumar D, Parkash O (2008) Electronic structure, electrical and dielectric properties of BaSnO3 below 300 K. Jpn J Appl Phys 47:3540–3545

    Article  CAS  Google Scholar 

  4. Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer HT, Pientschke C, Beige H (2008) Study of the pyroelectric behavior of BaTi1–x Sn x O3 piezo-ceramics. J Electroceram 20:43–46

    Article  CAS  Google Scholar 

  5. Wang T, Chen XM, Zheng XH (2003) Dielectric characteristics and tunability of barium stannatetitanate ceramics. J Electroceram 11:173–178

    Article  CAS  Google Scholar 

  6. Ostrick B, Fleischer M, Lampe U, Meixner H (1997) Preparation of stoichiometric barium stannate thin films: hall measurements and gas sensitivities. Sensors Actuators B 44:601–606

    Article  CAS  Google Scholar 

  7. Tao S, Gao F, Liu X, Sørensen OT (2000) Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation. Sensors Actuators B 71:223–227

    Article  CAS  Google Scholar 

  8. Lampe U, Gerblinger J, Meixner H (1995) Carbon-monoxide sensors based on thin films of BaSnO3. Sensors Actuators B 24–25:657–660

    Article  Google Scholar 

  9. Hodjati S, Vaezzadeh K, Petit C, Pitchon V, Kiennemann A (2000) NO x absorption–desorption study: application to diesel and lean-burn exhaust gas (selective NOx recirculation technique). Catal Today 59:323–334

    Article  CAS  Google Scholar 

  10. McGeehin P and Williams DE (1993) Sensing gaseous substances international application, Patent No WO 9308467 A1 19930429. Indian Institute of Technology (Banaras Hindu University), Varanasi

  11. Gopal Reddy CV, Manorama SV, Rao VJ (2001) Preparation and characterization of barium stannate: application as a liquefied petroleum gas sensor. J Mater Sci Mater Electron 12:137–142

    Article  Google Scholar 

  12. Dilute XC (2004) Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor. Mater Sci Eng B 106:305–307

    Article  Google Scholar 

  13. Borse PH, Lee JS, Kim HG (2006) Theoretical band energetics of Ba(M0.5Sn0.5)O3 for solar photoactive applications. J Appl Phys 100:124915–124921

    Article  Google Scholar 

  14. Borse PH, Joshi UA, Ji SM, Jang JS, Lee JS, Jeong ED, Kim HG (2007) Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl Phys Lett 90:034103–034111

    Article  Google Scholar 

  15. Yuan Y, Lv J, Jiang X, Li Z, Yu T, Zou Z, Ye J (2007) Large impact of strontium substitution on photocatalytic water splitting activity of BaSnO3. Appl Phys Lett 91:094107–094111

    Article  Google Scholar 

  16. Mizoguchi H, Woodward PM, Park C, Keszler DA (2004) Strong near-infrared luminescence in BaSnO3. J Am Chem Soc 126:9796–9800

    Article  CAS  Google Scholar 

  17. Wang Y, Chesnaud A, Bevillon E, Dezanneau G (2012) Properties of Y-doped BaSnO3 proton conductors. Solid State Ionics 214:45–55

    Article  CAS  Google Scholar 

  18. Schober T (1998) Protonic conduction in BaIn0.50Sn0.50O2.7. Solid State Ionics 109:1–11

    Article  CAS  Google Scholar 

  19. Wang Y, Chesnaud A, Bevillon E, Yang J, Dezanneau G (2011) Synthesis, structure and protonic conduction of BaSn0.875M0.125O3-δ (M = Sc, Y, In and Gd). Int J Hydrog Energy 36:7688–7695

    Article  CAS  Google Scholar 

  20. Wang Y, Chesnaud A, Bevillon E, Yang J, Dezanneau G (2011) Influence of ZnO additive on the properties of Y-doped BaSnO3 proton conductor. Mater Sci Eng B 176:1178–1183

    Article  CAS  Google Scholar 

  21. Li L, Nino JC (2013) Proton-conducting barium stannates: doping strategies and transport properties. Int J Hydrog Energy 38:1598–1605

    Article  CAS  Google Scholar 

  22. Wang Y (2011) Ph.D. thesis Ecole Centrale Paris. Synthesis and characterization of acceptor-doped barium stannate compounds as proton conductors. Indian Institute of Technology (Banaras Hindu University), Varanasi

  23. Wang Y, Chesnaud A, Bévillon E, Xiong J, Yang J (2013) Effects of Sn substitution on structural and electrical properties of BaSn0.75M0.25O3-δ (M = Sc, In, Y, Gd, Nd.). J Alloys Compd 555:395–401

    Article  CAS  Google Scholar 

  24. Bévillon E, Geneste G, Chesnaud A, Dezanneau G (2008) Ab initio study of La-doped BaSnO3 proton conductor. Ionics 14:293–301

    Article  Google Scholar 

  25. Hadjarab B, Bouguelia A, Trari M (2007) Optical and transport properties of lanthanum-doped stannate BaSnO3. J Phys D Appl Phys 40:5833–5839

    Article  CAS  Google Scholar 

  26. Hadjarab B, Bouguelia A, Benchettara A, Trari MA (2008) The transport and photo electrochemical properties of La-doped stannate BaSnO3. J Alloys Compd 461:360–366

    Article  CAS  Google Scholar 

  27. Wang HF, Liu Q, Chen ZF, Gao GY, Wu W (2007) Transparent and conductive oxide films with the perovskite structure: La- and Sb-doped BaSnO3. J Appl Phys 101:106105-1-3

    Google Scholar 

  28. Trari M, Doumerc JP, Dordor P, Pouchard M, Behr G, Krabbes G (1994) Preparation and characterization of lanthanum doped BaSnO3. J Phys Chem Solids 55:1239–1243

    Article  CAS  Google Scholar 

  29. Yasukawa M, Kono T, Ueda K, Yanagi H, Hosono H (2010) High-temperature thermoelectric properties of La-doped BaSnO3 ceramics. Mater Sci Eng B 173:29–32

    Article  CAS  Google Scholar 

  30. Yasuhuwa M, Kone T, Ueda K, Yanag H, Kim SW, Hosono H (2013) Thermoelectric properties and figure of merit of perovskite type Ba1-xLaxSnO2 with x = 0.002-0.008. Solid State Commun 173:49–53

    Article  Google Scholar 

  31. Upadhyay S, Parkashand O, Kumar D (2004) Synthesis, structure and electrical behaviour of lanthanum-doped barium stannate. J Phys D Appl Phys 37:1483–1491

    Article  CAS  Google Scholar 

  32. Azad AM, Hon NC (1998) Characterization of BaSnO-based ceramics part-1: synthesis, processing and microstructural development. J Alloys Compd 270:95–106

    Article  CAS  Google Scholar 

  33. Srivastava OP, Kumar N, Sharma IB (2004) Solid state synthesis and structural refinement of polycrystalline La x Ca1–x TiO3 ceramic powder. Bull Mater Sci 27:121–126

    Article  Google Scholar 

  34. Duan LB, Rao GH, Wang YC, Yu J, Wang T (2008) Magnetization and Raman scattering studies of (Co,Mn) codoped ZnO nanoparticles. J Appl Phys 104:013909-1–013909-5

    Google Scholar 

  35. Worlock JM, Porto SPC (1965) Raman scattering by F centre. Phys Rev Lett 15:697–99

    Article  CAS  Google Scholar 

  36. Stanislavchuk TN, Sirenko AA, Litvinchuk AP, Luo X, Cheong SW (2012) Electronic band structure and optical phonons of BaSnO3 and Ba0.97La 0.03SnO3 single crystals: theory and experiment. J Appl Phys 112:044108

    Article  Google Scholar 

  37. Balamurugan K, Harish Kumar N, Balachandran B, Ramachandra Rao MS, Chelvane JA, Santhosh PN (2009) Magnetic and optical properties of Mn-doped BaSnO3. Solid State Commun 49:884–887

    Article  Google Scholar 

  38. James KK, Krishnaprasad PS, Hasna K, Jayarajn MK (2015) Structural and optical properties of La-doped BaSnO3 thin films grown by PLD. J Phys Chem Solids 76:64–69

    Article  CAS  Google Scholar 

  39. Gao QQ, Yu QX, Yuan K, Fu XN, Chen B, Zhu CX, Zhu H (2013) Influence of annealing atmosphere on room temperature ferromagnetism of Mn-doped ZnO nanoparticles. Appl Surf Sci 264:7–10

    Article  CAS  Google Scholar 

  40. Gupta HC, Brown S, Rani N, Gohel VB (2001) A lattice dynamical investigation of the Raman and the infra red frequencies of the cubic A2Sn2O7 pyrochlores. Int J Inorg Mater 3:983–986

    Article  CAS  Google Scholar 

  41. Ribeiro SJL, Santilli CV, Pulcinelli SH, Fortes FL, Oliveira L (1994) Spectroscopic characterization of SnO2 gels. J Sol-Gel Sci Technol 2:263–267

    Article  CAS  Google Scholar 

  42. Gmelin (1975) Handbuch der Anorganischen Chemie, Zinn C3, 8 Auflageth edn. Springer, Berlin/Heidelberg, p 193

    Google Scholar 

  43. Deepa AS, Vidya S, Manu PC, Solomon S, John A, Thomas JK (2011) Structural and optical characterization of BaSnO3, nano powder synthesized through a novel combustion technique. J Alloys Compd 509:1830–1835

    Article  CAS  Google Scholar 

  44. Animista I, Dogodaeva E, Tarasova N, Kosareva O, Neiman A (2011) Oxygen-ion and proton transport in Ba4Na2W2O11. Solid State Ionics 185:1–5

    Article  Google Scholar 

  45. Lu W, Schmidt H (2008) Lyothermal synthesis of nanocrystalline BaSnO3 powders. Ceram Int 34:645–649

    Article  CAS  Google Scholar 

  46. Ganguly M, Rout SK, Sinha TP, Sharma SK, Park HY, Ahn CW, Kim IW (2013) Characterization and rietveld refinement of a-site deficient lanthanum doped barium titanate. J Alloys Compd 579:473–484

    Article  CAS  Google Scholar 

  47. Upadhyay S (2013) High temperature impedance spectroscopy of barium stannate BaSnO3. Bull Mater Sci 36:1019–1036

    Article  CAS  Google Scholar 

  48. Verkerk MJ, Middelhuis BJ, Burggraaf AJ (1982) Effect of grain boundaries on conductivity of high purity ZrO2, Y2O3 ceramics. Solid State Ionics 6:159–170

    Article  CAS  Google Scholar 

  49. Christie GM, Berkel FPF (1996) Microstructure–ionic conductivity relationship in ceria-gadolinia electrolytes. Solid State Ionics 83:17–27

    Article  CAS  Google Scholar 

  50. Murugraj P, Kreur KD, He T, Schober T, Maier J (1997) High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98:1–132

    Article  Google Scholar 

  51. Lu W, Jiang S, Zhou D, Gong S (2000) Structural and electrical properties of Ba(Sn, Sb)O3 electroceramic. Sensors Actuators A 80:35–37

    Article  CAS  Google Scholar 

  52. Kreurer KD (1999) Aspect of the formation and mobility of protonic charge carriers and the stability of perovskite oxides. Solid State Ionics 125:285–302

    Article  Google Scholar 

  53. Kreurer KD (2003) Protonic conducting oxides. Annu Rev Mater Res 33:333–359

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the heads of the Department of Physics, Department of Ceramic Engineering, and Department of Chemical Engineering, IIT (BHU), for providing facilities required for the characterization of the samples. The authors are also grateful to Dr. R.K. Singh, Professor, Department of Physics, Science Faculty, BHU, Varanasi, for providing facilities to record the Raman spectra of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shail Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansaree, M.J., Upadhyay, S. Electrical characterization of porous La-doped BaSnO3 using impedance spectroscopy. Ionics 21, 2825–2838 (2015). https://doi.org/10.1007/s11581-015-1476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1476-1

Keywords

Navigation