Skip to main content
Log in

Cobalt oxide microtubes with balsam pear-shaped outer surfaces as anode material for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Co3O4 microtubes with balsam pear-shaped outer surfaces and void spaces were synthesized by the Kirkendall effect. Intermediate phase Li1.47Co3O4 was detected by X-ray diffraction (XRD) to illustrate the severe volume change during electrode reactions and detail the conversion of Co3O4 to Li2O and Co. Changes in and influences on Li2O and Co during the first cycle were explored through calculations based on electrochemical impedance spectroscopy (EIS) tests to obtain a better understanding of the electrode reaction processes. The void spaces in the tube walls accommodated the volume change during electrode reactions, and the balsam pear-shaped outer surfaces expanded the available active surface for electrode reactions. As a result, the prepared Co3O4 microtubes exhibited strong electrochemical performance. The first discharge capacity reached ∼907 mAh g−1 at 5.00 mA cm−2, and discharge capacity remained above 400 mAh g−1 until the 40th cycle at 0.05 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang ZG, Wang SP (2014) High cycling performance cathode material: interconnected LiFePO4/Carbon nanoparticles fabricated by sol–gel method. J Nanomater. doi:10.1155/2014/801562

    Google Scholar 

  2. Cheng H, Wang SP, Tao D, Wang M (2014) Sulfur/Co3O4 nanotube composite with high performances as cathode materials for lithium sulfur batteries. Funct Mater Lett 7(3). doi:10.1142/s1793604714500209

  3. Cheng H, Wang SP (2014) Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries. J Mater Chem A 2(34):13783–13794. doi:10.1039/c4ta02821j

    Article  CAS  Google Scholar 

  4. Dong K, Wang SP, Zhang HY, Wu JP (2013) Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Mater Res Bull 48(6):2079–2083. doi:10.1016/j.materresbull.2013.02.031

    Article  CAS  Google Scholar 

  5. Zeng J et al (2014) Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries. J Solid State Electrochem 18(6):1585–1591. doi:10.1007/s10008-013-2372-0

    Article  CAS  Google Scholar 

  6. Zeng J, Wang SP, Liu QL, Lei XR (2014) High-capacity V-/Sc-/Ti-doped MnO2 for Li/MnO2 batteries and structural changes at different discharge depths. Electrochim Acta 127:115–122. doi:10.1016/j.electacta.2014.01.167

    Article  CAS  Google Scholar 

  7. Zhao HG, Wang SP, Fan LR, Wu JP (2014) The modification of natural pyrite and its electrochemical properties in Li/FeS2 batteries. Funct Mater Lett 7(1). doi:10.1142/s1793604713500690

  8. Liu QL, Wang SP, Tan HB, Yang ZG, Zeng J (2013) Preparation and doping mode of doped LiMn2O4 for Li-Ion batteries. Energies 6(3):1718–1730. doi:10.3390/en6031718

    Article  CAS  Google Scholar 

  9. He X et al (2013) Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J Mater Chem A 1:11121–11125

    Article  CAS  Google Scholar 

  10. Li W-Y, Xu L-N, Chen J (2005) Co3O4 Nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15(5):851–857

    Article  CAS  Google Scholar 

  11. Li B et al (2011) Co3O4@ graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 50(5):1628–1632

    Article  CAS  Google Scholar 

  12. Hao F, Zhang Z, Yin L-W (2013) Co3O4/Carbon aerogel hybrids as anode materials for lithium ion batteries with enhanced electrochemical properties. ACS Appl Mat Interfaces

  13. Xu M et al (2013) Co3O4/Carbon nanotube heterostructures with bead-on-string architecture for enhanced lithium storage performance. Nanoscale 5(17):8067–8072

    Article  CAS  Google Scholar 

  14. Sun F, et al. (2012) Hierarchical structure of Co3 O4 nanoparticles on Si nanowires array films for lithium-ion battery applications. Appl Surf Sci

  15. Wang Y et al (2010) Designed functional systems from peapod-like Co@ carbon to Co3O4@ carbon nanocomposites. ACS Nano 4(8):4753–4761

    Article  CAS  Google Scholar 

  16. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258–262

    Article  CAS  Google Scholar 

  17. Rui X et al (2012) Template-free synthesis of urchin-like Co3 O4 hollow spheres with good lithium storage properties. J Power Sources

  18. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Article  CAS  Google Scholar 

  19. Sun J et al (2013) Free-standing and binder-free lithium-ion electrode based on robust layered assembly of graphene and Co3O4 nanosheets. Nanoscale

  20. Fei Z, He S, Li L, Ji W, Au C-T (2012) Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion. Chem Commun 48(6):853–855

    Article  CAS  Google Scholar 

  21. Kim Y et al (2014) Additive-free hollow-structured Co3O4 nanoparticles Li-Ion battery: the origins of irreversible capacity loss. ACS Nano

  22. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

  23. Laruelle S et al (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634

    Article  CAS  Google Scholar 

  24. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341. doi:10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  25. Van der Ven A, Bhattacharya J, Belak AA (2012) Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res

  26. Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149(3):A234–A241. doi:10.1149/1.1435358

    Article  CAS  Google Scholar 

  27. Wang GX et al (2002) Nanosize cobalt oxides as anode materials for lithium-ion batteries. J Alloys Compd 340(1–2):L5–L10. doi:10.1016/s0925-8388(02)00005-1

    Article  CAS  Google Scholar 

  28. Grugeon S et al (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292

    Article  CAS  Google Scholar 

  29. Yan N et al (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116(12):7227–7235. doi:10.1021/jp2126009

    Article  CAS  Google Scholar 

  30. Hoa Nguyen V, Shim J-J (2015) The 3D Co3O4/graphene/nickel foam electrode with enhanced electrochemical performance for supercapacitors. Mater Lett 139(0):377–381. doi:10.1016/j.matlet.2014.10.128

    Article  CAS  Google Scholar 

  31. Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0. 7Sr0. 3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55(3):922–926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21173198) and the Natural Science Foundation of Hubei Province, China (2014CFA097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, S., Liu, Y. et al. Cobalt oxide microtubes with balsam pear-shaped outer surfaces as anode material for lithium ion batteries. Ionics 21, 2423–2430 (2015). https://doi.org/10.1007/s11581-015-1453-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1453-8

Keywords

Navigation